File size: 15,240 Bytes
564f142
 
 
 
5d42805
 
 
 
 
 
1f6995c
5d42805
 
 
 
 
 
 
 
 
 
 
 
c6774a0
5d42805
 
 
 
 
1f6995c
 
849b2e7
 
8c314b2
 
 
 
849b2e7
 
 
 
 
 
 
 
 
 
8c314b2
849b2e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c314b2
5d42805
 
 
 
 
 
 
 
 
 
 
 
1f6995c
 
 
 
 
 
 
 
5d42805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6995c
 
23a8b3a
1f6995c
 
 
e08d293
 
 
 
 
 
afd5786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c019ab
afd5786
c6774a0
afd5786
 
e08d293
afd5786
 
 
 
e08d293
c6774a0
afd5786
 
 
 
 
c6774a0
afd5786
 
c6774a0
564f142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6774a0
e08d293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d42805
 
 
 
 
1f6995c
5d42805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6995c
 
849b2e7
 
 
 
 
1f6995c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
#DOCS 
# https://langchain-ai.github.io/langgraph/reference/prebuilt/#langgraph.prebuilt.chat_agent_executor.create_react_agent


import uuid
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from langchain_core.messages import (
    BaseMessage,
    HumanMessage,
    SystemMessage,
    trim_messages,
)
from langchain_core.tools import tool
from langchain_openai import ChatOpenAI
from langgraph.checkpoint.memory import MemorySaver
from langgraph.prebuilt import create_react_agent
from pydantic import BaseModel
import json
from typing import Optional, Annotated
from langchain_core.runnables import RunnableConfig
from langgraph.prebuilt import InjectedState
from document_rag_router import router as document_rag_router
from document_rag_router import QueryInput, query_collection, SearchResult,db
from fastapi import HTTPException
import requests
from sse_starlette.sse import EventSourceResponse
from fastapi.middleware.cors import CORSMiddleware
import re
import os
from langchain_core.prompts import ChatPromptTemplate


import logging.config

# Configure logging at application startup
logging.config.dictConfig({
    "version": 1,
    "disable_existing_loggers": False,
    "formatters": {
        "default": {
            "format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
            "datefmt": "%Y-%m-%d %H:%M:%S",
        }
    },
    "handlers": {
        "console": {
            "class": "logging.StreamHandler",
            "stream": "ext://sys.stdout",
            "formatter": "default",
            "level": "DEBUG",
        }
    },
    "root": {
        "level": "DEBUG",
        "handlers": ["console"]
    },
    "loggers": {
        "uvicorn": {"handlers": ["console"], "level": "DEBUG"},
        "fastapi": {"handlers": ["console"], "level": "DEBUG"}
    }
})

# Create logger instance
logger = logging.getLogger(__name__)

app = FastAPI()
app.include_router(document_rag_router) 

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

def get_current_files():
    """Get list of files in current directory"""
    try:
        files = os.listdir('.')
        return ", ".join(files)
    except Exception as e:
        return f"Error getting files: {str(e)}"

@tool
def get_user_age(name: str) -> str:
    """Use this tool to find the user's age."""
    if "bob" in name.lower():
        return "42 years old"
    return "41 years old"

@tool
async def query_documents(
    query: str,
    config: RunnableConfig,
) -> str:
    """Use this tool to retrieve relevant data from the collection.
    
    Args:
        query: The search query to find relevant document passages
    """
    # Get collection_id and user_id from config
    thread_config = config.get("configurable", {})
    collection_id = thread_config.get("collection_id")
    user_id = thread_config.get("user_id")
    
    if not collection_id or not user_id:
        return "Error: collection_id and user_id are required in the config"
    try:    
        # Create query input
        input_data = QueryInput(
            collection_id=collection_id,
            query=query,
            user_id=user_id,
            top_k=6
        )
        
        response = await query_collection(input_data)
        results = []
        
        # Access response directly since it's a Pydantic model
        for r in response.results:
            result_dict = {
                "text": r.text,
                "distance": r.distance,
                "metadata": {
                    "document_id": r.metadata.get("document_id"),
                    "chunk_index": r.metadata.get("location", {}).get("chunk_index")
                }
            }
            results.append(result_dict)
        
        return str(results)
    
    except Exception as e:
        print(e)
        return f"Error querying documents: {e} PAUSE AND ASK USER FOR HELP"

async def query_documents_raw(
    query: str,
    config: RunnableConfig,
) -> SearchResult:
    """Use this tool to retrieve relevant data from the collection.
    
    Args:
        query: The search query to find relevant document passages
    """
    # Get collection_id and user_id from config
    thread_config = config.get("configurable", {})
    collection_id = thread_config.get("collection_id")
    user_id = thread_config.get("user_id")
    
    if not collection_id or not user_id:
        return "Error: collection_id and user_id are required in the config"
    try:    
        # Create query input
        input_data = QueryInput(
            collection_id=collection_id,
            query=query,
            user_id=user_id,
            top_k=6
        )
        
        response = await query_collection(input_data)
        return response.results
    
    except Exception as e:
        print(e)
        return f"Error querying documents: {e} PAUSE AND ASK USER FOR HELP"

memory = MemorySaver()
model = ChatOpenAI(model="gpt-4o-mini", streaming=True)

# Create a prompt template for formatting
prompt = ChatPromptTemplate.from_messages([
    ("system", "You are a helpful AI assistant. The current collection contains the following files: {collection_files}, use query_documents tool to answer user queries from the document. use query planning to create document section queries if a summary is required"),
    ("placeholder", "{messages}"),
])

import requests
from requests.exceptions import RequestException, Timeout
import logging
from typing import Optional


# def get_collection_files(collection_id: str, user_id: str) -> str:
#     """
#     Synchronously get list of files in the specified collection using the external API
#     with proper timeout and error handling.
#     """
#     try:
#         url = "https://pvanand-documind-api-v2.hf.space/rag/get_collection_files"
#         params = {
#             "collection_id": collection_id,
#             "user_id": user_id
#         }
#         headers = {
#             'accept': 'application/json'
#         }
        
#         logger.debug(f"Requesting collection files for user {user_id}, collection {collection_id}")
        
#         # Set timeout to 5 seconds
#         response = requests.post(url, params=params, headers=headers, data='', timeout=5)
        
#         if response.status_code == 200:
#             logger.info(f"Successfully retrieved collection files: {response.text[:100]}...")
#             return response.text
#         else:
#             logger.error(f"API error (status {response.status_code}): {response.text}")
#             return f"Error fetching files (status {response.status_code})"
            
#     except Timeout:
#         logger.error("Timeout while fetching collection files")
#         return "Error: Request timed out"
#     except RequestException as e:
#         logger.error(f"Network error fetching collection files: {str(e)}")
#         return f"Error: Network issue - {str(e)}"
#     except Exception as e:
#         logger.error(f"Error fetching collection files: {str(e)}", exc_info=True)
#         return f"Error fetching files: {str(e)}"


def get_collection_files(collection_id: str, user_id: str) -> str:
    """Get list of files in the specified collection"""
    try:
        # Get the full collection name
        collection_name = f"{user_id}_{collection_id}"
        
        # Open the table and convert to pandas
        table = db.open_table(collection_name)
        df = table.to_pandas()
        print(df.head())
        
        
        # Get unique file names
        unique_files = df['file_name'].unique()
        
        # Join the file names into a string
        return ", ".join(unique_files)
    except Exception as e:
        logging.error(f"Error getting collection files: {str(e)}")
        return f"Error getting files: {str(e)}"

def format_for_model(state: dict, config: Optional[RunnableConfig] = None) -> list[BaseMessage]:
    """
    Format the input state and config for the model.
    
    Args:
        state: The current state dictionary containing messages
        config: Optional RunnableConfig containing thread configuration
        
    Returns:
        Formatted messages for the model
    """
    # Get collection_id and user_id from config instead of state
    thread_config = config.get("configurable", {}) if config else {}
    collection_id = thread_config.get("collection_id")
    user_id = thread_config.get("user_id")
    
    try:
        # Get files in the collection with timeout protection
        if collection_id and user_id:
            collection_files = get_collection_files(collection_id, user_id)
        else:
            collection_files = "No files available"
            
        logger.info(f"Fetching collection for userid {user_id} and collection_id {collection_id} || Results: {collection_files[:100]}...")
        
        # Format using the prompt template
        return prompt.invoke({
            "collection_files": collection_files,
            "messages": state.get("messages", [])
        })
        
    except Exception as e:
        logger.error(f"Error in format_for_model: {str(e)}", exc_info=True)
        # Return a basic format if there's an error
        return prompt.invoke({
            "collection_files": "Error fetching files",
            "messages": state.get("messages", [])
        })

async def clean_tool_input(tool_input: str):
    # Use regex to parse the first key and value
    pattern = r"{\s*'([^']+)':\s*'([^']+)'"
    match = re.search(pattern, tool_input)
    if match:
        key, value = match.groups()
        return {key: value}
    return [tool_input]

async def clean_tool_response(tool_output: str):
    """Clean and extract relevant information from tool response if it contains query_documents."""
    if "query_documents" in tool_output:
        try:
            # First safely evaluate the string as a Python literal
            import ast
            print(tool_output)
            # Extract the list string from the content
            start = tool_output.find("[{")
            end = tool_output.rfind("}]") + 2
            if start >= 0 and end > 0:
                list_str = tool_output[start:end]
                
                # Convert string to Python object using ast.literal_eval
                results = ast.literal_eval(list_str)
                
                # Return only relevant fields
                return [{"text": r["text"], "document_id": r["metadata"]["document_id"]} 
                       for r in results]
                
        except SyntaxError as e:
            print(f"Syntax error in parsing: {e}")
            return f"Error parsing document results: {str(e)}"
        except Exception as e:
            print(f"General error: {e}")
            return f"Error processing results: {str(e)}"
    return tool_output

agent = create_react_agent(
    model,
    tools=[query_documents],
    checkpointer=memory,
    state_modifier=format_for_model,
)

class ChatInput(BaseModel):
    message: str
    thread_id: Optional[str] = None
    collection_id: Optional[str] = None
    user_id: Optional[str] = None

@app.post("/chat")
async def chat(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id,
            "collection_id": input_data.collection_id,
            "user_id": input_data.user_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}"

            elif kind == "on_tool_start":
                tool_input = str(event['data'].get('input', ''))
                yield f"{json.dumps({'type': 'tool_start', 'tool': event['name'], 'input': tool_input})}"
            
            elif kind == "on_tool_end":
                tool_output = str(event['data'].get('output', ''))
                yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': tool_output})}"
    
    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

@app.post("/chat2")
async def chat2(input_data: ChatInput):
    thread_id = input_data.thread_id or str(uuid.uuid4())
    
    config = {
        "configurable": {
            "thread_id": thread_id,
            "collection_id": input_data.collection_id,
            "user_id": input_data.user_id
        }
    }
    
    input_message = HumanMessage(content=input_data.message)
    
    async def generate():
        async for event in agent.astream_events(
            {"messages": [input_message]}, 
            config,
            version="v2"
        ):
            kind = event["event"]
            
            if kind == "on_chat_model_stream":
                content = event["data"]["chunk"].content
                if content:
                    yield f"{json.dumps({'type': 'token', 'content': content})}"

            elif kind == "on_tool_start":
                tool_name = event['name']
                tool_input = event['data'].get('input', '')
                clean_input = await clean_tool_input(str(tool_input))
                yield f"{json.dumps({'type': 'tool_start', 'tool': tool_name, 'inputs': clean_input})}"
            
            elif kind == "on_tool_end":
                if "query_documents" in event['name']:
                    print(event)
                    raw_output = await query_documents_raw(str(event['data'].get('input', '')), config)
                    try:
                        serializable_output = [
                            {
                                "text": result.text,
                                "distance": result.distance,
                                "metadata": result.metadata
                            }
                            for result in raw_output
                        ]
                        yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': json.dumps(serializable_output)})}"
                    except Exception as e:
                        print(e)
                        yield f"{json.dumps({'type': 'tool_end', 'tool': event['name'], 'output': str(raw_output)})}"
                else:
                    tool_name = event['name']
                    raw_output = str(event['data'].get('output', ''))
                    clean_output = await clean_tool_response(raw_output)
                    yield f"{json.dumps({'type': 'tool_end', 'tool': tool_name, 'output': clean_output})}"
    
    return EventSourceResponse(
        generate(),
        media_type="text/event-stream"
    )

@app.get("/health")
async def health_check():
    return {"status": "healthy"}






if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)