Spaces:
Sleeping
Sleeping
File size: 9,258 Bytes
5447b31 26763bc 0bc6b7f 2067ac1 8ea1ea1 5447b31 5b2a137 6a1e40c 5b2a137 2067ac1 5b2a137 5584a7b 5b2a137 2067ac1 717f430 2067ac1 8ea1ea1 b0bc62e adba56d b0bc62e 2067ac1 b0bc62e cd5ac8a 865db2f b0bc62e 8ea1ea1 cd5ac8a 8ea1ea1 2067ac1 b0bc62e 2067ac1 b0bc62e adba56d 2067ac1 b0bc62e 2067ac1 26763bc 5447b31 26763bc 37fef8c 5b552f8 37fef8c 5b552f8 37fef8c 5b552f8 37fef8c 7682cdd e582175 7682cdd d97f279 6a1e40c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# This files contains your custom actions which can be used to run
# custom Python code.
#
# See this guide on how to implement these action:
# https://rasa.com/docs/rasa/custom-actions
from typing import Any, Text, Dict, List
from rasa_sdk import Action, Tracker
from rasa_sdk.events import SlotSet, FollowupAction
from rasa_sdk.executor import CollectingDispatcher
import random
import os
import sys
# import openai
import cohere
# Add "/app/actions" to the sys.path
actions_path = os.path.abspath("/app/actions")
sys.path.insert(0, actions_path)
print("-#-System-path-#-")
for path in sys.path:
print(path)
print("-#-END-OF-System-path-#-")
# Import search_content.py from /actions folder
from search_content import main_search
# Import api key from secrets
secret_value_0 = os.environ.get("openai")
# openai.api_key = secret_value_0
# Provide your OpenAI API key
# def generate_openai_response(user_queries, model_engine="gpt-3.5-turbo", max_tokens=100, temperature=0.5):
# """Generate a response using the OpenAI API."""
# # Send last two user queries for vector search
# if len(user_queries) >= 2:
# results = main_search(user_queries[-1]+user_queries[-2])
# else:
# results = main_search(user_queries[-1])
# # Create context from the results
# context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory
# messages=[
# {"role": "system", "content": f"You are a helpful assistant tasked to answer user queries using the following context: {context}"}
# ]
# max_user_queries_to_include = min(1,len(user_queries))
# # The latest query is at the end of the list
# for i in range(len(user_queries)):
# if i<max_user_queries_to_include:
# messages.append({"role": "user", "content": user_queries[-max_user_queries_to_include+i]})
# response = openai.ChatCompletion.create(
# model="gpt-3.5-turbo",
# messages= messages,
# max_tokens=124,
# temperature=0,
# top_p=1,
# frequency_penalty=0,
# presence_penalty=0
# )
# return response.choices[0]['message']['content'].strip()#+"Debug Info: Openai-input_1: "+str(messages_1)+" Openai_input_0"+str( messages_0)+" user_queries: "+str(user_queries)
def generate_openai_response(user_queries, model_engine="gpt-3.5-turbo", max_tokens=100, temperature=0.5):
"""Generate a response using the OpenAI API."""
# Send last two user queries for vector search
if len(user_queries) >= 2:
results = main_search(user_queries[-1]+user_queries[-2])
else:
results = main_search(user_queries[-1])
# Create context from the results
context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory
messages=f"You are a helpful assistant tasked to answer user query :{user_queries[-1]} using the following context: {context}"
max_user_queries_to_include = min(1,len(user_queries))
# The latest query is at the end of the list
co = cohere.Client(secret_value_0)
response = co.generate(prompt=messages)
print(response)
return response[0].text.strip()#+"Debug Info:
class GetOpenAIResponse(Action):
def name(self) -> Text:
return "action_get_response_openai"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Extract conversation data
conversation_history = tracker.events
user_queries = []
bot_responses = []
for event in conversation_history:
if event.get("event") == "user":
user_queries.append(event.get("text"))
elif event.get("event") == "bot":
bot_responses.append(event.get("text"))
# Use OpenAI API to generate a response
#query = tracker.latest_message.get('text')
response = generate_openai_response(user_queries)
# Output the generated response to user
dispatcher.utter_message(text=str(response))
class GeneralHelp(Action):
def name(self) -> Text:
return "action_general_help"
def run(self, dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
user_role = tracker.slots.get("user_role", None)
if user_role is None:
dispatcher.utter_message(text="Sure! Are you a developer or a client representing an organization?")
else:
return [FollowupAction("action_help_with_role")]
# Modified from @Rohit Garg's code https://github.com/rohitkg83/Omdena/blob/master/actions/actions.py
class ActionHelpWithRole(Action):
def name(self) -> Text:
return "action_help_with_role"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the first_occurrence_user_type slot
current_user_type = tracker.slots.get("user_role", None)
if current_user_type == 'developer':
msg = "Thanks a lot for providing the details. You can join one of our local chapter and collaborate on " \
"various projects and challenges to Develop Your Skills, Get Recognized, and Make an Impact. Please " \
"visit https://omdena.com/community for more details. Do you have any other questions? "
elif current_user_type == 'client':
msg = "Thanks a lot for providing the details. With us you can Innovate, Deploy and Scale " \
"AI Solutions in Record Time. For more details please visit https://omdena.com/offerings. Do you have any other questions? "
else:
msg = "Please enter either developer or client"
dispatcher.utter_message(text=msg)
class ResetSlotsAction(Action):
def name(self) -> Text:
return "action_reset_slots"
def run(self, dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
slots_to_reset = ["user_role"] # Add the names of the slots you want to reset
events = [SlotSet(slot, None) for slot in slots_to_reset]
return events
class ActionJoinClassify(Action):
def name(self) -> Text:
return "action_join_classify"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the latest intent
last_intent = tracker.slots.get("local_chapter", None)
# Check if the last intent was 'local_chapter'
if last_intent == 'local chapter':
dispatcher.utter_message(template="utter_join_chapter")
else:
return [FollowupAction("action_get_response_openai")]
class ActionEligibilityClassify(Action):
def name(self) -> Text:
return "action_eligibility_classify"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the latest intent
last_intent = tracker.slots.get("local_chapter", None)
# Check if the last intent was 'local_chapter'
if last_intent == 'local chapter':
dispatcher.utter_message(template="utter_local_chapter_participation_eligibility")
else:
return [FollowupAction("action_get_response_openai")]
class ActionCostClassify(Action):
def name(self) -> Text:
return "action_cost_classify"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Get the value of the latest intent
last_intent = tracker.slots.get("local_chapter", None)
# Check if the last intent was 'local_chapter'
if last_intent == 'local chapter':
dispatcher.utter_message(template="utter_local_chapter_cost")
else:
return [FollowupAction("action_get_response_openai")]
class SayHelloWorld(Action):
def name(self) -> Text:
return "action_hello_world"
def run(self,
dispatcher: CollectingDispatcher,
tracker: Tracker,
domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:
# Use OpenAI API to generate a response
secret_value_0 = os.environ.get("openai")
openai.api_key = secret_value_0
model_engine = "text-davinci-002"
prompt_template = "Say hello world"
response = openai.Completion.create(
engine=model_engine,
prompt=prompt_template,
max_tokens=124,
temperature=0.8,
n=1,
stop=None,
)
# Output the generated response to user
generated_text = response.choices[0].text
dispatcher.utter_message(text=generated_text) |