Spaces:
Sleeping
Sleeping
Upload search_content.py
Browse filesUpload search_content.py to enable vector search
- actions/search_content.py +55 -0
actions/search_content.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# search_content.py
|
| 2 |
+
|
| 3 |
+
import faiss
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
|
| 7 |
+
# Define paths for model, Faiss index, and data file
|
| 8 |
+
MODEL_SAVE_PATH = "all-distilroberta-v1-model.pkl"
|
| 9 |
+
FAISS_INDEX_FILE_PATH = "index.faiss"
|
| 10 |
+
DATA_FILE_PATH = "/content/omdena_faq_training_data.csv"
|
| 11 |
+
|
| 12 |
+
def load_transformer_model(model_file):
|
| 13 |
+
"""Load a sentence transformer model from a file."""
|
| 14 |
+
return SentenceTransformer.load(model_file)
|
| 15 |
+
|
| 16 |
+
def load_faiss_index(filename):
|
| 17 |
+
"""Load a Faiss index from a file."""
|
| 18 |
+
return faiss.read_index(filename)
|
| 19 |
+
|
| 20 |
+
def load_data(file_path):
|
| 21 |
+
"""Load data from a CSV file and preprocess it."""
|
| 22 |
+
data_frame = pd.read_csv(file_path)
|
| 23 |
+
data_frame["id"] = data_frame.index
|
| 24 |
+
# Create a 'QNA' column that combines 'Questions' and 'Answers'
|
| 25 |
+
data_frame['QNA'] = data_frame.apply(lambda row: f"Question: {row['Questions']}, Answer: {row['Answers']}", axis=1)
|
| 26 |
+
return data_frame.set_index(["id"], drop=False)
|
| 27 |
+
|
| 28 |
+
def search_content(query, data_frame_indexed, transformer_model, faiss_index, k=5):
|
| 29 |
+
"""Search the content using a query and return the top k results."""
|
| 30 |
+
# Encode the query using the model
|
| 31 |
+
query_vector = transformer_model.encode([query])
|
| 32 |
+
# Normalize the query vector
|
| 33 |
+
faiss.normalize_L2(query_vector)
|
| 34 |
+
# Search the Faiss index using the query vector
|
| 35 |
+
top_k = faiss_index.search(query_vector, k)
|
| 36 |
+
# Extract the IDs and similarities of the top k results
|
| 37 |
+
ids = top_k[1][0].tolist()
|
| 38 |
+
similarities = top_k[0][0].tolist()
|
| 39 |
+
# Get the corresponding results from the data frame
|
| 40 |
+
results = data_frame_indexed.loc[ids]
|
| 41 |
+
# Add a column for the similarities
|
| 42 |
+
results["similarities"] = similarities
|
| 43 |
+
return results
|
| 44 |
+
|
| 45 |
+
def main_search(query):
|
| 46 |
+
"""Main function to execute the search."""
|
| 47 |
+
transformer_model = load_transformer_model(MODEL_SAVE_PATH)
|
| 48 |
+
faiss_index = load_faiss_index(FAISS_INDEX_FILE_PATH)
|
| 49 |
+
data_frame_indexed = load_data(DATA_FILE_PATH)
|
| 50 |
+
results = search_content(query, data_frame_indexed, transformer_model, faiss_index)
|
| 51 |
+
return results['QNA'] # return the results
|
| 52 |
+
|
| 53 |
+
if __name__ == "__main__":
|
| 54 |
+
query = "school courses"
|
| 55 |
+
print(main_search(query)) # print the results if this script is run directly
|