# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/custom-actions from typing import Any, Text, Dict, List from rasa_sdk import Action, Tracker from rasa_sdk.events import SlotSet, FollowupAction from rasa_sdk.executor import CollectingDispatcher import random import os import sys # import openai import cohere # Add "/app/actions" to the sys.path actions_path = os.path.abspath("/app/actions") sys.path.insert(0, actions_path) print("-#-System-path-#-") for path in sys.path: print(path) print("-#-END-OF-System-path-#-") # Import search_content.py from /actions folder from search_content import main_search # Import api key from secrets secret_value_0 = os.environ.get("openai") # openai.api_key = secret_value_0 # Provide your OpenAI API key # def generate_openai_response(user_queries, model_engine="gpt-3.5-turbo", max_tokens=100, temperature=0.5): # """Generate a response using the OpenAI API.""" # # Send last two user queries for vector search # if len(user_queries) >= 2: # results = main_search(user_queries[-1]+user_queries[-2]) # else: # results = main_search(user_queries[-1]) # # Create context from the results # context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory # messages=[ # {"role": "system", "content": f"You are a helpful assistant tasked to answer user queries using the following context: {context}"} # ] # max_user_queries_to_include = min(1,len(user_queries)) # # The latest query is at the end of the list # for i in range(len(user_queries)): # if i= 2: results = main_search(user_queries[-1]+user_queries[-2]) else: results = main_search(user_queries[-1]) # Create context from the results context = "".join([f"#{str(i)}" for i in results])[:2014] # Trim the context to 2014 characters - Modify as necessory messages=f"You are a helpful assistant tasked to answer user query :{user_queries[-1]} using the following context: {context}" max_user_queries_to_include = min(1,len(user_queries)) # The latest query is at the end of the list co = cohere.Client(secret_value_0) response = co.generate(prompt=messages) print(response) return response[0].text.strip()#+"Debug Info: class GetOpenAIResponse(Action): def name(self) -> Text: return "action_get_response_openai" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Extract conversation data conversation_history = tracker.events user_queries = [] bot_responses = [] for event in conversation_history: if event.get("event") == "user": user_queries.append(event.get("text")) elif event.get("event") == "bot": bot_responses.append(event.get("text")) # Use OpenAI API to generate a response #query = tracker.latest_message.get('text') response = generate_openai_response(user_queries) # Output the generated response to user dispatcher.utter_message(text=str(response)) class GeneralHelp(Action): def name(self) -> Text: return "action_general_help" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: user_role = tracker.slots.get("user_role", None) if user_role is None: dispatcher.utter_message(text="Sure! Are you a developer or a client representing an organization?") else: return [FollowupAction("action_help_with_role")] # Modified from @Rohit Garg's code https://github.com/rohitkg83/Omdena/blob/master/actions/actions.py class ActionHelpWithRole(Action): def name(self) -> Text: return "action_help_with_role" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the first_occurrence_user_type slot current_user_type = tracker.slots.get("user_role", None) if current_user_type == 'developer': msg = "Thanks a lot for providing the details. You can join one of our local chapter and collaborate on " \ "various projects and challenges to Develop Your Skills, Get Recognized, and Make an Impact. Please " \ "visit https://omdena.com/community for more details. Do you have any other questions? " elif current_user_type == 'client': msg = "Thanks a lot for providing the details. With us you can Innovate, Deploy and Scale " \ "AI Solutions in Record Time. For more details please visit https://omdena.com/offerings. Do you have any other questions? " else: msg = "Please enter either developer or client" dispatcher.utter_message(text=msg) class ResetSlotsAction(Action): def name(self) -> Text: return "action_reset_slots" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: slots_to_reset = ["user_role"] # Add the names of the slots you want to reset events = [SlotSet(slot, None) for slot in slots_to_reset] return events class ActionJoinClassify(Action): def name(self) -> Text: return "action_join_classify" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the latest intent last_intent = tracker.slots.get("local_chapter", None) # Check if the last intent was 'local_chapter' if last_intent == 'local chapter': dispatcher.utter_message(template="utter_join_chapter") else: return [FollowupAction("action_get_response_openai")] class ActionEligibilityClassify(Action): def name(self) -> Text: return "action_eligibility_classify" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the latest intent last_intent = tracker.slots.get("local_chapter", None) # Check if the last intent was 'local_chapter' if last_intent == 'local chapter': dispatcher.utter_message(template="utter_local_chapter_participation_eligibility") else: return [FollowupAction("action_get_response_openai")] class ActionCostClassify(Action): def name(self) -> Text: return "action_cost_classify" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Get the value of the latest intent last_intent = tracker.slots.get("local_chapter", None) # Check if the last intent was 'local_chapter' if last_intent == 'local chapter': dispatcher.utter_message(template="utter_local_chapter_cost") else: return [FollowupAction("action_get_response_openai")] class SayHelloWorld(Action): def name(self) -> Text: return "action_hello_world" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: # Use OpenAI API to generate a response secret_value_0 = os.environ.get("openai") openai.api_key = secret_value_0 model_engine = "text-davinci-002" prompt_template = "Say hello world" response = openai.Completion.create( engine=model_engine, prompt=prompt_template, max_tokens=124, temperature=0.8, n=1, stop=None, ) # Output the generated response to user generated_text = response.choices[0].text dispatcher.utter_message(text=generated_text)