Spaces:
Sleeping
Sleeping
Update observability.py
Browse files- observability.py +175 -175
observability.py
CHANGED
@@ -1,176 +1,176 @@
|
|
1 |
-
# File: llm_observability.py
|
2 |
-
import sqlite3
|
3 |
-
import json
|
4 |
-
from datetime import datetime
|
5 |
-
from typing import Dict, Any, List, Optional, Callable
|
6 |
-
import logging
|
7 |
-
import functools
|
8 |
-
|
9 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
def log_execution(func: Callable) -> Callable:
|
13 |
-
@functools.wraps(func)
|
14 |
-
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
15 |
-
logger.info(f"Executing {func.__name__}")
|
16 |
-
try:
|
17 |
-
result = func(*args, **kwargs)
|
18 |
-
logger.info(f"{func.__name__} completed successfully")
|
19 |
-
return result
|
20 |
-
except Exception as e:
|
21 |
-
logger.error(f"Error in {func.__name__}: {e}")
|
22 |
-
raise
|
23 |
-
return wrapper
|
24 |
-
|
25 |
-
|
26 |
-
class LLMObservabilityManager:
|
27 |
-
def __init__(self, db_path: str = "llm_observability_v2.db"):
|
28 |
-
self.db_path = db_path
|
29 |
-
self.create_table()
|
30 |
-
|
31 |
-
def create_table(self):
|
32 |
-
with sqlite3.connect(self.db_path) as conn:
|
33 |
-
cursor = conn.cursor()
|
34 |
-
cursor.execute('''
|
35 |
-
CREATE TABLE IF NOT EXISTS llm_observations (
|
36 |
-
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
37 |
-
conversation_id TEXT,
|
38 |
-
created_at DATETIME,
|
39 |
-
status TEXT,
|
40 |
-
request TEXT,
|
41 |
-
response TEXT,
|
42 |
-
model TEXT,
|
43 |
-
prompt_tokens INTEGER,
|
44 |
-
completion_tokens INTEGER,
|
45 |
-
total_tokens INTEGER,
|
46 |
-
cost FLOAT,
|
47 |
-
latency FLOAT,
|
48 |
-
user TEXT
|
49 |
-
)
|
50 |
-
''')
|
51 |
-
|
52 |
-
def insert_observation(self, response: str, conversation_id: str, status: str, request: str, model: str, prompt_tokens: int,completion_tokens: int, total_tokens: int, cost: float, latency: float, user: str):
|
53 |
-
created_at = datetime.now()
|
54 |
-
|
55 |
-
with sqlite3.connect(self.db_path) as conn:
|
56 |
-
cursor = conn.cursor()
|
57 |
-
cursor.execute('''
|
58 |
-
INSERT INTO llm_observations
|
59 |
-
(conversation_id, created_at, status, request, response, model, prompt_tokens, completion_tokens,total_tokens, cost, latency, user)
|
60 |
-
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
61 |
-
''', (
|
62 |
-
conversation_id,
|
63 |
-
created_at,
|
64 |
-
status,
|
65 |
-
request,
|
66 |
-
response,
|
67 |
-
model,
|
68 |
-
prompt_tokens,
|
69 |
-
completion_tokens,
|
70 |
-
total_tokens,
|
71 |
-
cost,
|
72 |
-
latency,
|
73 |
-
user
|
74 |
-
))
|
75 |
-
|
76 |
-
def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
77 |
-
with sqlite3.connect(self.db_path) as conn:
|
78 |
-
cursor = conn.cursor()
|
79 |
-
if conversation_id:
|
80 |
-
cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,))
|
81 |
-
else:
|
82 |
-
cursor.execute('SELECT * FROM llm_observations ORDER BY created_at')
|
83 |
-
rows = cursor.fetchall()
|
84 |
-
|
85 |
-
column_names = [description[0] for description in cursor.description]
|
86 |
-
return [dict(zip(column_names, row)) for row in rows]
|
87 |
-
|
88 |
-
def get_all_observations(self) -> List[Dict[str, Any]]:
|
89 |
-
return self.get_observations()
|
90 |
-
|
91 |
-
def get_all_unique_conversation_observations(self, limit: Optional[int] = None) -> List[Dict[str, Any]]:
|
92 |
-
with sqlite3.connect(self.db_path) as conn:
|
93 |
-
cursor = conn.cursor()
|
94 |
-
# Get the latest observation for each unique conversation_id
|
95 |
-
query = '''
|
96 |
-
SELECT * FROM llm_observations o1
|
97 |
-
WHERE created_at = (
|
98 |
-
SELECT MAX(created_at)
|
99 |
-
FROM llm_observations o2
|
100 |
-
WHERE o2.conversation_id = o1.conversation_id
|
101 |
-
)
|
102 |
-
ORDER BY created_at DESC
|
103 |
-
'''
|
104 |
-
if limit is not None:
|
105 |
-
query += f' LIMIT {limit}'
|
106 |
-
|
107 |
-
cursor.execute(query)
|
108 |
-
rows = cursor.fetchall()
|
109 |
-
|
110 |
-
column_names = [description[0] for description in cursor.description]
|
111 |
-
return [dict(zip(column_names, row)) for row in rows]
|
112 |
-
|
113 |
-
## OBSERVABILITY
|
114 |
-
from uuid import uuid4
|
115 |
-
import csv
|
116 |
-
from io import StringIO
|
117 |
-
from fastapi import APIRouter, HTTPException
|
118 |
-
from pydantic import BaseModel
|
119 |
-
from starlette.responses import StreamingResponse
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
router = APIRouter(
|
124 |
-
prefix="/observability",
|
125 |
-
tags=["observability"]
|
126 |
-
)
|
127 |
-
|
128 |
-
class ObservationResponse(BaseModel):
|
129 |
-
observations: List[Dict]
|
130 |
-
|
131 |
-
def create_csv_response(observations: List[Dict]) -> StreamingResponse:
|
132 |
-
def iter_csv(data):
|
133 |
-
output = StringIO()
|
134 |
-
writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else [])
|
135 |
-
writer.writeheader()
|
136 |
-
for row in data:
|
137 |
-
writer.writerow(row)
|
138 |
-
output.seek(0)
|
139 |
-
yield output.read()
|
140 |
-
|
141 |
-
headers = {
|
142 |
-
'Content-Disposition': 'attachment; filename="observations.csv"'
|
143 |
-
}
|
144 |
-
return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers)
|
145 |
-
|
146 |
-
|
147 |
-
@router.get("/last-observations/{limit}")
|
148 |
-
async def get_last_observations(limit: int = 10, format: str = "json"):
|
149 |
-
observability_manager = LLMObservabilityManager()
|
150 |
-
|
151 |
-
try:
|
152 |
-
# Get all observations, sorted by created_at in descending order
|
153 |
-
all_observations = observability_manager.get_observations()
|
154 |
-
all_observations.sort(key=lambda x: x['created_at'], reverse=True)
|
155 |
-
|
156 |
-
# Get the last conversation_id
|
157 |
-
if all_observations:
|
158 |
-
last_conversation_id = all_observations[0]['conversation_id']
|
159 |
-
|
160 |
-
# Filter observations for the last conversation
|
161 |
-
last_conversation_observations = [
|
162 |
-
obs for obs in all_observations
|
163 |
-
if obs['conversation_id'] == last_conversation_id
|
164 |
-
][:limit]
|
165 |
-
|
166 |
-
if format.lower() == "csv":
|
167 |
-
return create_csv_response(last_conversation_observations)
|
168 |
-
else:
|
169 |
-
return ObservationResponse(observations=last_conversation_observations)
|
170 |
-
else:
|
171 |
-
if format.lower() == "csv":
|
172 |
-
return create_csv_response([])
|
173 |
-
else:
|
174 |
-
return ObservationResponse(observations=[])
|
175 |
-
except Exception as e:
|
176 |
raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}")
|
|
|
1 |
+
# File: llm_observability.py
|
2 |
+
import sqlite3
|
3 |
+
import json
|
4 |
+
from datetime import datetime
|
5 |
+
from typing import Dict, Any, List, Optional, Callable
|
6 |
+
import logging
|
7 |
+
import functools
|
8 |
+
|
9 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
def log_execution(func: Callable) -> Callable:
|
13 |
+
@functools.wraps(func)
|
14 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
15 |
+
logger.info(f"Executing {func.__name__}")
|
16 |
+
try:
|
17 |
+
result = func(*args, **kwargs)
|
18 |
+
logger.info(f"{func.__name__} completed successfully")
|
19 |
+
return result
|
20 |
+
except Exception as e:
|
21 |
+
logger.error(f"Error in {func.__name__}: {e}")
|
22 |
+
raise
|
23 |
+
return wrapper
|
24 |
+
|
25 |
+
|
26 |
+
class LLMObservabilityManager:
|
27 |
+
def __init__(self, db_path: str = "/data/llm_observability_v2.db"):
|
28 |
+
self.db_path = db_path
|
29 |
+
self.create_table()
|
30 |
+
|
31 |
+
def create_table(self):
|
32 |
+
with sqlite3.connect(self.db_path) as conn:
|
33 |
+
cursor = conn.cursor()
|
34 |
+
cursor.execute('''
|
35 |
+
CREATE TABLE IF NOT EXISTS llm_observations (
|
36 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
37 |
+
conversation_id TEXT,
|
38 |
+
created_at DATETIME,
|
39 |
+
status TEXT,
|
40 |
+
request TEXT,
|
41 |
+
response TEXT,
|
42 |
+
model TEXT,
|
43 |
+
prompt_tokens INTEGER,
|
44 |
+
completion_tokens INTEGER,
|
45 |
+
total_tokens INTEGER,
|
46 |
+
cost FLOAT,
|
47 |
+
latency FLOAT,
|
48 |
+
user TEXT
|
49 |
+
)
|
50 |
+
''')
|
51 |
+
|
52 |
+
def insert_observation(self, response: str, conversation_id: str, status: str, request: str, model: str, prompt_tokens: int,completion_tokens: int, total_tokens: int, cost: float, latency: float, user: str):
|
53 |
+
created_at = datetime.now()
|
54 |
+
|
55 |
+
with sqlite3.connect(self.db_path) as conn:
|
56 |
+
cursor = conn.cursor()
|
57 |
+
cursor.execute('''
|
58 |
+
INSERT INTO llm_observations
|
59 |
+
(conversation_id, created_at, status, request, response, model, prompt_tokens, completion_tokens,total_tokens, cost, latency, user)
|
60 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
61 |
+
''', (
|
62 |
+
conversation_id,
|
63 |
+
created_at,
|
64 |
+
status,
|
65 |
+
request,
|
66 |
+
response,
|
67 |
+
model,
|
68 |
+
prompt_tokens,
|
69 |
+
completion_tokens,
|
70 |
+
total_tokens,
|
71 |
+
cost,
|
72 |
+
latency,
|
73 |
+
user
|
74 |
+
))
|
75 |
+
|
76 |
+
def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
77 |
+
with sqlite3.connect(self.db_path) as conn:
|
78 |
+
cursor = conn.cursor()
|
79 |
+
if conversation_id:
|
80 |
+
cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,))
|
81 |
+
else:
|
82 |
+
cursor.execute('SELECT * FROM llm_observations ORDER BY created_at')
|
83 |
+
rows = cursor.fetchall()
|
84 |
+
|
85 |
+
column_names = [description[0] for description in cursor.description]
|
86 |
+
return [dict(zip(column_names, row)) for row in rows]
|
87 |
+
|
88 |
+
def get_all_observations(self) -> List[Dict[str, Any]]:
|
89 |
+
return self.get_observations()
|
90 |
+
|
91 |
+
def get_all_unique_conversation_observations(self, limit: Optional[int] = None) -> List[Dict[str, Any]]:
|
92 |
+
with sqlite3.connect(self.db_path) as conn:
|
93 |
+
cursor = conn.cursor()
|
94 |
+
# Get the latest observation for each unique conversation_id
|
95 |
+
query = '''
|
96 |
+
SELECT * FROM llm_observations o1
|
97 |
+
WHERE created_at = (
|
98 |
+
SELECT MAX(created_at)
|
99 |
+
FROM llm_observations o2
|
100 |
+
WHERE o2.conversation_id = o1.conversation_id
|
101 |
+
)
|
102 |
+
ORDER BY created_at DESC
|
103 |
+
'''
|
104 |
+
if limit is not None:
|
105 |
+
query += f' LIMIT {limit}'
|
106 |
+
|
107 |
+
cursor.execute(query)
|
108 |
+
rows = cursor.fetchall()
|
109 |
+
|
110 |
+
column_names = [description[0] for description in cursor.description]
|
111 |
+
return [dict(zip(column_names, row)) for row in rows]
|
112 |
+
|
113 |
+
## OBSERVABILITY
|
114 |
+
from uuid import uuid4
|
115 |
+
import csv
|
116 |
+
from io import StringIO
|
117 |
+
from fastapi import APIRouter, HTTPException
|
118 |
+
from pydantic import BaseModel
|
119 |
+
from starlette.responses import StreamingResponse
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
router = APIRouter(
|
124 |
+
prefix="/observability",
|
125 |
+
tags=["observability"]
|
126 |
+
)
|
127 |
+
|
128 |
+
class ObservationResponse(BaseModel):
|
129 |
+
observations: List[Dict]
|
130 |
+
|
131 |
+
def create_csv_response(observations: List[Dict]) -> StreamingResponse:
|
132 |
+
def iter_csv(data):
|
133 |
+
output = StringIO()
|
134 |
+
writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else [])
|
135 |
+
writer.writeheader()
|
136 |
+
for row in data:
|
137 |
+
writer.writerow(row)
|
138 |
+
output.seek(0)
|
139 |
+
yield output.read()
|
140 |
+
|
141 |
+
headers = {
|
142 |
+
'Content-Disposition': 'attachment; filename="observations.csv"'
|
143 |
+
}
|
144 |
+
return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers)
|
145 |
+
|
146 |
+
|
147 |
+
@router.get("/last-observations/{limit}")
|
148 |
+
async def get_last_observations(limit: int = 10, format: str = "json"):
|
149 |
+
observability_manager = LLMObservabilityManager()
|
150 |
+
|
151 |
+
try:
|
152 |
+
# Get all observations, sorted by created_at in descending order
|
153 |
+
all_observations = observability_manager.get_observations()
|
154 |
+
all_observations.sort(key=lambda x: x['created_at'], reverse=True)
|
155 |
+
|
156 |
+
# Get the last conversation_id
|
157 |
+
if all_observations:
|
158 |
+
last_conversation_id = all_observations[0]['conversation_id']
|
159 |
+
|
160 |
+
# Filter observations for the last conversation
|
161 |
+
last_conversation_observations = [
|
162 |
+
obs for obs in all_observations
|
163 |
+
if obs['conversation_id'] == last_conversation_id
|
164 |
+
][:limit]
|
165 |
+
|
166 |
+
if format.lower() == "csv":
|
167 |
+
return create_csv_response(last_conversation_observations)
|
168 |
+
else:
|
169 |
+
return ObservationResponse(observations=last_conversation_observations)
|
170 |
+
else:
|
171 |
+
if format.lower() == "csv":
|
172 |
+
return create_csv_response([])
|
173 |
+
else:
|
174 |
+
return ObservationResponse(observations=[])
|
175 |
+
except Exception as e:
|
176 |
raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}")
|