Spaces:
Sleeping
Sleeping
Update rag_routerv2.py
Browse files- rag_routerv2.py +216 -184
rag_routerv2.py
CHANGED
@@ -1,185 +1,217 @@
|
|
1 |
-
from fastapi import FastAPI, Depends, HTTPException, UploadFile, File
|
2 |
-
import pandas as pd
|
3 |
-
import lancedb
|
4 |
-
from functools import cached_property, lru_cache
|
5 |
-
from pydantic import Field, BaseModel
|
6 |
-
from typing import Optional, Dict, List, Annotated, Any
|
7 |
-
from fastapi import APIRouter
|
8 |
-
import uuid
|
9 |
-
import io
|
10 |
-
from io import BytesIO
|
11 |
-
import csv
|
12 |
-
|
13 |
-
# LlamaIndex imports
|
14 |
-
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex
|
15 |
-
from llama_index.vector_stores.lancedb import LanceDBVectorStore
|
16 |
-
from llama_index.embeddings.fastembed import FastEmbedEmbedding
|
17 |
-
from llama_index.core import StorageContext, load_index_from_storage
|
18 |
-
import json
|
19 |
-
import os
|
20 |
-
import shutil
|
21 |
-
|
22 |
-
router = APIRouter(
|
23 |
-
prefix="/rag",
|
24 |
-
tags=["rag"]
|
25 |
-
)
|
26 |
-
|
27 |
-
# Configure global LlamaIndex settings
|
28 |
-
Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
29 |
-
tables_file_path = './data/tables.json'
|
30 |
-
|
31 |
-
# Database connection dependency
|
32 |
-
@lru_cache()
|
33 |
-
def get_db_connection(db_path: str = "./lancedb/dev"):
|
34 |
-
return lancedb.connect(db_path)
|
35 |
-
|
36 |
-
# Pydantic models
|
37 |
-
class CreateTableResponse(BaseModel):
|
38 |
-
table_id: str
|
39 |
-
message: str
|
40 |
-
status: str
|
41 |
-
|
42 |
-
class QueryTableResponse(BaseModel):
|
43 |
-
results: Dict[str, Any]
|
44 |
-
total_results: int
|
45 |
-
|
46 |
-
|
47 |
-
@router.post("/create_table", response_model=CreateTableResponse)
|
48 |
-
async def create_embedding_table(
|
49 |
-
user_id: str,
|
50 |
-
files: List[UploadFile] = File(...),
|
51 |
-
table_id: Optional[str] = None
|
52 |
-
) -> CreateTableResponse:
|
53 |
-
"""Create a table and load embeddings from uploaded files using LlamaIndex."""
|
54 |
-
allowed_extensions = {".pdf", ".docx", ".csv", ".txt", ".md"}
|
55 |
-
for file in files:
|
56 |
-
if file.filename is None:
|
57 |
-
raise HTTPException(status_code=400, detail="File must have a valid name.")
|
58 |
-
file_extension = os.path.splitext(file.filename)[1].lower()
|
59 |
-
if file_extension not in allowed_extensions:
|
60 |
-
raise HTTPException(
|
61 |
-
status_code=400,
|
62 |
-
detail=f"File type {file_extension} is not allowed. Supported file types are: {', '.join(allowed_extensions)}."
|
63 |
-
)
|
64 |
-
|
65 |
-
if table_id is None:
|
66 |
-
table_id = str(uuid.uuid4())
|
67 |
-
table_name = table_id #f"{user_id}__table__{table_id}"
|
68 |
-
|
69 |
-
# Create a directory for the uploaded files
|
70 |
-
directory_path = f"./data/{table_name}"
|
71 |
-
os.makedirs(directory_path, exist_ok=True)
|
72 |
-
|
73 |
-
# Save each uploaded file to the data directory
|
74 |
-
for file in files:
|
75 |
-
file_path = os.path.join(directory_path, file.filename)
|
76 |
-
with open(file_path, "wb") as buffer:
|
77 |
-
shutil.copyfileobj(file.file, buffer)
|
78 |
-
|
79 |
-
# Store user_id and table_name in a JSON file
|
80 |
-
try:
|
81 |
-
tables_file_path = './data/tables.json'
|
82 |
-
os.makedirs(os.path.dirname(tables_file_path), exist_ok=True)
|
83 |
-
# Load existing tables or create a new file if it doesn't exist
|
84 |
-
try:
|
85 |
-
with open(tables_file_path, 'r') as f:
|
86 |
-
tables = json.load(f)
|
87 |
-
except (FileNotFoundError, json.JSONDecodeError):
|
88 |
-
tables = {}
|
89 |
-
|
90 |
-
# Update the tables dictionary
|
91 |
-
if user_id not in tables:
|
92 |
-
tables[user_id] = []
|
93 |
-
if table_name not in tables[user_id]:
|
94 |
-
tables[user_id].append(table_name)
|
95 |
-
|
96 |
-
# Write the updated tables back to the JSON file
|
97 |
-
with open(tables_file_path, 'w') as f:
|
98 |
-
json.dump(tables, f)
|
99 |
-
|
100 |
-
except Exception as e:
|
101 |
-
raise HTTPException(status_code=500, detail=f"Failed to update tables file: {str(e)}")
|
102 |
-
try:
|
103 |
-
# Setup LanceDB vector store
|
104 |
-
vector_store = LanceDBVectorStore(
|
105 |
-
uri="./lancedb/dev",
|
106 |
-
table_name=table_name,
|
107 |
-
# mode="overwrite",
|
108 |
-
# query_type="vector"
|
109 |
-
)
|
110 |
-
|
111 |
-
# Load documents using SimpleDirectoryReader
|
112 |
-
documents = SimpleDirectoryReader(directory_path).load_data()
|
113 |
-
|
114 |
-
# Create the index
|
115 |
-
index = VectorStoreIndex.from_documents(
|
116 |
-
documents,
|
117 |
-
vector_store=vector_store
|
118 |
-
)
|
119 |
-
index.storage_context.persist(persist_dir=f"./lancedb/index/{table_name}")
|
120 |
-
|
121 |
-
return CreateTableResponse(
|
122 |
-
table_id=table_id,
|
123 |
-
message=f"Table created and documents indexed successfully",
|
124 |
-
status="success"
|
125 |
-
)
|
126 |
-
|
127 |
-
except Exception as e:
|
128 |
-
raise HTTPException(status_code=500, detail=f"Table creation failed: {str(e)}")
|
129 |
-
|
130 |
-
@router.post("/query_table/{table_id}", response_model=QueryTableResponse)
|
131 |
-
async def query_table(
|
132 |
-
table_id: str,
|
133 |
-
query: str,
|
134 |
-
user_id: str,
|
135 |
-
#db: Annotated[Any, Depends(get_db_connection)],
|
136 |
-
limit: Optional[int] = 10
|
137 |
-
) -> QueryTableResponse:
|
138 |
-
"""Query the database table using LlamaIndex."""
|
139 |
-
try:
|
140 |
-
table_name = table_id #f"{user_id}__table__{table_id}"
|
141 |
-
|
142 |
-
# load index and retriever
|
143 |
-
storage_context = StorageContext.from_defaults(persist_dir=f"./lancedb/index/{table_name}")
|
144 |
-
index = load_index_from_storage(storage_context)
|
145 |
-
retriever = index.as_retriever(similarity_top_k=limit)
|
146 |
-
|
147 |
-
# Get response
|
148 |
-
response = retriever.retrieve(query)
|
149 |
-
|
150 |
-
# Format results
|
151 |
-
results = [{
|
152 |
-
'text': node.text,
|
153 |
-
'score': node.score
|
154 |
-
} for node in response]
|
155 |
-
|
156 |
-
return QueryTableResponse(
|
157 |
-
results={'data': results},
|
158 |
-
total_results=len(results)
|
159 |
-
)
|
160 |
-
|
161 |
-
except Exception as e:
|
162 |
-
raise HTTPException(status_code=500, detail=f"Query failed: {str(e)}")
|
163 |
-
|
164 |
-
@router.get("/get_tables/{user_id}")
|
165 |
-
async def get_tables(user_id: str):
|
166 |
-
"""Get all tables for a user."""
|
167 |
-
|
168 |
-
tables_file_path = './data/tables.json'
|
169 |
-
try:
|
170 |
-
# Load existing tables from the JSON file
|
171 |
-
with open(tables_file_path, 'r') as f:
|
172 |
-
tables = json.load(f)
|
173 |
-
|
174 |
-
# Retrieve tables for the specified user
|
175 |
-
user_tables = tables.get(user_id, [])
|
176 |
-
return user_tables
|
177 |
-
|
178 |
-
except (FileNotFoundError, json.JSONDecodeError):
|
179 |
-
return [] # Return an empty list if the file doesn't exist or is invalid
|
180 |
-
except Exception as e:
|
181 |
-
raise HTTPException(status_code=500, detail=f"Failed to retrieve tables: {str(e)}")
|
182 |
-
|
183 |
-
@router.
|
184 |
-
async def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
return {"status": "healthy"}
|
|
|
1 |
+
from fastapi import FastAPI, Depends, HTTPException, UploadFile, File
|
2 |
+
import pandas as pd
|
3 |
+
import lancedb
|
4 |
+
from functools import cached_property, lru_cache
|
5 |
+
from pydantic import Field, BaseModel
|
6 |
+
from typing import Optional, Dict, List, Annotated, Any
|
7 |
+
from fastapi import APIRouter
|
8 |
+
import uuid
|
9 |
+
import io
|
10 |
+
from io import BytesIO
|
11 |
+
import csv
|
12 |
+
|
13 |
+
# LlamaIndex imports
|
14 |
+
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex
|
15 |
+
from llama_index.vector_stores.lancedb import LanceDBVectorStore
|
16 |
+
from llama_index.embeddings.fastembed import FastEmbedEmbedding
|
17 |
+
from llama_index.core import StorageContext, load_index_from_storage
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import shutil
|
21 |
+
|
22 |
+
router = APIRouter(
|
23 |
+
prefix="/rag",
|
24 |
+
tags=["rag"]
|
25 |
+
)
|
26 |
+
|
27 |
+
# Configure global LlamaIndex settings
|
28 |
+
Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
29 |
+
tables_file_path = './data/tables.json'
|
30 |
+
|
31 |
+
# Database connection dependency
|
32 |
+
@lru_cache()
|
33 |
+
def get_db_connection(db_path: str = "./lancedb/dev"):
|
34 |
+
return lancedb.connect(db_path)
|
35 |
+
|
36 |
+
# Pydantic models
|
37 |
+
class CreateTableResponse(BaseModel):
|
38 |
+
table_id: str
|
39 |
+
message: str
|
40 |
+
status: str
|
41 |
+
|
42 |
+
class QueryTableResponse(BaseModel):
|
43 |
+
results: Dict[str, Any]
|
44 |
+
total_results: int
|
45 |
+
|
46 |
+
|
47 |
+
@router.post("/create_table", response_model=CreateTableResponse)
|
48 |
+
async def create_embedding_table(
|
49 |
+
user_id: str,
|
50 |
+
files: List[UploadFile] = File(...),
|
51 |
+
table_id: Optional[str] = None
|
52 |
+
) -> CreateTableResponse:
|
53 |
+
"""Create a table and load embeddings from uploaded files using LlamaIndex."""
|
54 |
+
allowed_extensions = {".pdf", ".docx", ".csv", ".txt", ".md"}
|
55 |
+
for file in files:
|
56 |
+
if file.filename is None:
|
57 |
+
raise HTTPException(status_code=400, detail="File must have a valid name.")
|
58 |
+
file_extension = os.path.splitext(file.filename)[1].lower()
|
59 |
+
if file_extension not in allowed_extensions:
|
60 |
+
raise HTTPException(
|
61 |
+
status_code=400,
|
62 |
+
detail=f"File type {file_extension} is not allowed. Supported file types are: {', '.join(allowed_extensions)}."
|
63 |
+
)
|
64 |
+
|
65 |
+
if table_id is None:
|
66 |
+
table_id = str(uuid.uuid4())
|
67 |
+
table_name = table_id #f"{user_id}__table__{table_id}"
|
68 |
+
|
69 |
+
# Create a directory for the uploaded files
|
70 |
+
directory_path = f"./data/{table_name}"
|
71 |
+
os.makedirs(directory_path, exist_ok=True)
|
72 |
+
|
73 |
+
# Save each uploaded file to the data directory
|
74 |
+
for file in files:
|
75 |
+
file_path = os.path.join(directory_path, file.filename)
|
76 |
+
with open(file_path, "wb") as buffer:
|
77 |
+
shutil.copyfileobj(file.file, buffer)
|
78 |
+
|
79 |
+
# Store user_id and table_name in a JSON file
|
80 |
+
try:
|
81 |
+
tables_file_path = './data/tables.json'
|
82 |
+
os.makedirs(os.path.dirname(tables_file_path), exist_ok=True)
|
83 |
+
# Load existing tables or create a new file if it doesn't exist
|
84 |
+
try:
|
85 |
+
with open(tables_file_path, 'r') as f:
|
86 |
+
tables = json.load(f)
|
87 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
88 |
+
tables = {}
|
89 |
+
|
90 |
+
# Update the tables dictionary
|
91 |
+
if user_id not in tables:
|
92 |
+
tables[user_id] = []
|
93 |
+
if table_name not in tables[user_id]:
|
94 |
+
tables[user_id].append(table_name)
|
95 |
+
|
96 |
+
# Write the updated tables back to the JSON file
|
97 |
+
with open(tables_file_path, 'w') as f:
|
98 |
+
json.dump(tables, f)
|
99 |
+
|
100 |
+
except Exception as e:
|
101 |
+
raise HTTPException(status_code=500, detail=f"Failed to update tables file: {str(e)}")
|
102 |
+
try:
|
103 |
+
# Setup LanceDB vector store
|
104 |
+
vector_store = LanceDBVectorStore(
|
105 |
+
uri="./lancedb/dev",
|
106 |
+
table_name=table_name,
|
107 |
+
# mode="overwrite",
|
108 |
+
# query_type="vector"
|
109 |
+
)
|
110 |
+
|
111 |
+
# Load documents using SimpleDirectoryReader
|
112 |
+
documents = SimpleDirectoryReader(directory_path).load_data()
|
113 |
+
|
114 |
+
# Create the index
|
115 |
+
index = VectorStoreIndex.from_documents(
|
116 |
+
documents,
|
117 |
+
vector_store=vector_store
|
118 |
+
)
|
119 |
+
index.storage_context.persist(persist_dir=f"./lancedb/index/{table_name}")
|
120 |
+
|
121 |
+
return CreateTableResponse(
|
122 |
+
table_id=table_id,
|
123 |
+
message=f"Table created and documents indexed successfully",
|
124 |
+
status="success"
|
125 |
+
)
|
126 |
+
|
127 |
+
except Exception as e:
|
128 |
+
raise HTTPException(status_code=500, detail=f"Table creation failed: {str(e)}")
|
129 |
+
|
130 |
+
@router.post("/query_table/{table_id}", response_model=QueryTableResponse)
|
131 |
+
async def query_table(
|
132 |
+
table_id: str,
|
133 |
+
query: str,
|
134 |
+
user_id: str,
|
135 |
+
#db: Annotated[Any, Depends(get_db_connection)],
|
136 |
+
limit: Optional[int] = 10
|
137 |
+
) -> QueryTableResponse:
|
138 |
+
"""Query the database table using LlamaIndex."""
|
139 |
+
try:
|
140 |
+
table_name = table_id #f"{user_id}__table__{table_id}"
|
141 |
+
|
142 |
+
# load index and retriever
|
143 |
+
storage_context = StorageContext.from_defaults(persist_dir=f"./lancedb/index/{table_name}")
|
144 |
+
index = load_index_from_storage(storage_context)
|
145 |
+
retriever = index.as_retriever(similarity_top_k=limit)
|
146 |
+
|
147 |
+
# Get response
|
148 |
+
response = retriever.retrieve(query)
|
149 |
+
|
150 |
+
# Format results
|
151 |
+
results = [{
|
152 |
+
'text': node.text,
|
153 |
+
'score': node.score
|
154 |
+
} for node in response]
|
155 |
+
|
156 |
+
return QueryTableResponse(
|
157 |
+
results={'data': results},
|
158 |
+
total_results=len(results)
|
159 |
+
)
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
raise HTTPException(status_code=500, detail=f"Query failed: {str(e)}")
|
163 |
+
|
164 |
+
@router.get("/get_tables/{user_id}")
|
165 |
+
async def get_tables(user_id: str):
|
166 |
+
"""Get all tables for a user."""
|
167 |
+
|
168 |
+
tables_file_path = './data/tables.json'
|
169 |
+
try:
|
170 |
+
# Load existing tables from the JSON file
|
171 |
+
with open(tables_file_path, 'r') as f:
|
172 |
+
tables = json.load(f)
|
173 |
+
|
174 |
+
# Retrieve tables for the specified user
|
175 |
+
user_tables = tables.get(user_id, [])
|
176 |
+
return user_tables
|
177 |
+
|
178 |
+
except (FileNotFoundError, json.JSONDecodeError):
|
179 |
+
return [] # Return an empty list if the file doesn't exist or is invalid
|
180 |
+
except Exception as e:
|
181 |
+
raise HTTPException(status_code=500, detail=f"Failed to retrieve tables: {str(e)}")
|
182 |
+
|
183 |
+
@router.on_event("startup")
|
184 |
+
async def startup():
|
185 |
+
print("RAG Router started")
|
186 |
+
from llama_index.core.schema import TextNode
|
187 |
+
table_name = "digiyatra"
|
188 |
+
vector_store = LanceDBVectorStore(
|
189 |
+
uri="./lancedb/dev",
|
190 |
+
table_name=table_name,
|
191 |
+
# mode="overwrite",
|
192 |
+
# query_type="vector"
|
193 |
+
)
|
194 |
+
# load digiyatra csv and create node for each row using csv.reader
|
195 |
+
with open("./data/digiyatra.csv", "r") as file:
|
196 |
+
reader = csv.reader(file)
|
197 |
+
nodes = []
|
198 |
+
for row in reader:
|
199 |
+
node = TextNode(text=row, id_=str(uuid.uuid4()))
|
200 |
+
nodes.append(node)
|
201 |
+
|
202 |
+
index = VectorStoreIndex(nodes, vector_store=vector_store)
|
203 |
+
index.storage_context.persist(persist_dir=f"./lancedb/index/{table_name}")
|
204 |
+
|
205 |
+
|
206 |
+
# Create tables dictionary
|
207 |
+
tables = {}
|
208 |
+
user_id = "digiyatra"
|
209 |
+
|
210 |
+
tables[user_id] = [table_name]
|
211 |
+
with open(tables_file_path, 'w') as f:
|
212 |
+
json.dump(tables, f)
|
213 |
+
|
214 |
+
|
215 |
+
@router.get("/health")
|
216 |
+
async def health_check():
|
217 |
return {"status": "healthy"}
|