pvanand commited on
Commit
d18dd19
·
verified ·
1 Parent(s): a98597c

Create document_generator_v3.py

Browse files
Files changed (1) hide show
  1. document_generator_v3.py +664 -0
document_generator_v3.py ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # File: prompts.py
2
+
3
+ DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
4
+ Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection.
5
+ make sure the Pages follow a logical flow and each prompt's content does not overlap with other pages.
6
+ OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
7
+ <output>
8
+ {
9
+ "Document": {
10
+ "Title": "Document Title",
11
+ "Author": "Author Name",
12
+ "Date": "YYYY-MM-DD",
13
+ "Version": "1.0",
14
+
15
+ "Pages": [
16
+ {
17
+ "PageNumber": "1",
18
+ "Title": "Section Title",
19
+ "Content": "overview", # Optional: Short overview of the Section, if not required leave it as "" empty string
20
+ "Subsections": [
21
+ {
22
+ "PageNumber": "1.1",
23
+ "Title": "Subsection Title",
24
+ "Content": "Specific prompt or instruction for generating content for this subsection"
25
+ }
26
+ ]
27
+ }
28
+ ]
29
+ }
30
+ }
31
+ </output>"""
32
+
33
+ DOCUMENT_OUTLINE_PROMPT_USER = """Generate a document outline consisting of {num_pages} pages for the following query: <prompt>{query}</prompt>"""
34
+
35
+ DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, You need to output only the content requested in the section in the prompt.
36
+ OUTPUT AS A WELL FORMATED DOCUMENT ENCLOSED IN <response></response> tags
37
+ <overall_objective>{overall_objective}</overall_objective>
38
+ <document_layout>{document_layout}</document_layout>"""
39
+
40
+ DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
41
+
42
+ ##########################################
43
+
44
+ DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM = """You are a document template generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
45
+ Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating template with placeholder text /example content for that particular section or subsection. Specify in each prompt to output as a template and use placeholder text/ tables as necessory.
46
+ make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections.
47
+ OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
48
+ <output>
49
+ {
50
+ "Document": {
51
+ "Title": "Document Title",
52
+ "Author": "Author Name",
53
+ "Date": "YYYY-MM-DD",
54
+ "Version": "1.0",
55
+
56
+ "Sections": [
57
+ {
58
+ "PageNumber": "1",
59
+ "Title": "Section Title",
60
+ "Content": "Specific prompt or instruction for generating template for this section",
61
+ "Subsections": [
62
+ {
63
+ "PageNumber": "1.1",
64
+ "Title": "Subsection Title",
65
+ "Content": "Specific prompt or instruction for generating template for this subsection"
66
+ }
67
+ ]
68
+ }
69
+ ]
70
+ }
71
+ }
72
+ </output>"""
73
+
74
+ DOCUMENT_TEMPLATE_PROMPT_USER = """<prompt>{query}</prompt>"""
75
+
76
+ DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM = """You are a document template generator,You need to output only the content requested in the section in the prompt, Use placeholder text/examples/tables wherever required.
77
+ FORMAT YOUR OUTPUT AS A TEMPLATE ENCLOSED IN <response></response> tags
78
+ <overall_objective>{overall_objective}</overall_objective>
79
+ <document_layout>{document_layout}</document_layout>"""
80
+
81
+ DOCUMENT_TEMPLATE_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
82
+
83
+
84
+ # File: llm_observability.py
85
+
86
+ import sqlite3
87
+ import json
88
+ from datetime import datetime
89
+ from typing import Dict, Any, List, Optional
90
+
91
+ class LLMObservabilityManager:
92
+ def __init__(self, db_path: str = "llm_observability_v2.db"):
93
+ self.db_path = db_path
94
+ self.create_table()
95
+
96
+ def create_table(self):
97
+ with sqlite3.connect(self.db_path) as conn:
98
+ cursor = conn.cursor()
99
+ cursor.execute('''
100
+ CREATE TABLE IF NOT EXISTS llm_observations (
101
+ id TEXT PRIMARY KEY,
102
+ conversation_id TEXT,
103
+ created_at DATETIME,
104
+ status TEXT,
105
+ request TEXT,
106
+ response TEXT,
107
+ model TEXT,
108
+ total_tokens INTEGER,
109
+ prompt_tokens INTEGER,
110
+ completion_tokens INTEGER,
111
+ latency FLOAT,
112
+ user TEXT
113
+ )
114
+ ''')
115
+
116
+ def insert_observation(self, response: Dict[str, Any], conversation_id: str, status: str, request: str, latency: float, user: str):
117
+ created_at = datetime.fromtimestamp(response['created'])
118
+
119
+ with sqlite3.connect(self.db_path) as conn:
120
+ cursor = conn.cursor()
121
+ cursor.execute('''
122
+ INSERT INTO llm_observations
123
+ (id, conversation_id, created_at, status, request, response, model, total_tokens, prompt_tokens, completion_tokens, latency, user)
124
+ VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
125
+ ''', (
126
+ response['id'],
127
+ conversation_id,
128
+ created_at,
129
+ status,
130
+ request,
131
+ json.dumps(response['choices'][0]['message']),
132
+ response['model'],
133
+ response['usage']['total_tokens'],
134
+ response['usage']['prompt_tokens'],
135
+ response['usage']['completion_tokens'],
136
+ latency,
137
+ user
138
+ ))
139
+
140
+ def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]:
141
+ with sqlite3.connect(self.db_path) as conn:
142
+ cursor = conn.cursor()
143
+ if conversation_id:
144
+ cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,))
145
+ else:
146
+ cursor.execute('SELECT * FROM llm_observations ORDER BY created_at')
147
+ rows = cursor.fetchall()
148
+
149
+ column_names = [description[0] for description in cursor.description]
150
+ return [dict(zip(column_names, row)) for row in rows]
151
+
152
+ def get_all_observations(self) -> List[Dict[str, Any]]:
153
+ return self.get_observations()
154
+
155
+
156
+ # File: app.py
157
+ import os
158
+ import json
159
+ import re
160
+ import asyncio
161
+ import time
162
+ from typing import List, Dict, Optional, Any, Callable, Union
163
+ from openai import OpenAI
164
+ import logging
165
+ import functools
166
+ from fastapi import APIRouter, HTTPException, Request, UploadFile, File, Depends
167
+ from fastapi.responses import StreamingResponse
168
+ from pydantic import BaseModel
169
+ from fastapi_cache import FastAPICache
170
+ from fastapi_cache.decorator import cache
171
+ import psycopg2
172
+ from datetime import datetime
173
+ import base64
174
+ from fastapi import Form
175
+
176
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
177
+ logger = logging.getLogger(__name__)
178
+
179
+ def log_execution(func: Callable) -> Callable:
180
+ @functools.wraps(func)
181
+ def wrapper(*args: Any, **kwargs: Any) -> Any:
182
+ logger.info(f"Executing {func.__name__}")
183
+ try:
184
+ result = func(*args, **kwargs)
185
+ logger.info(f"{func.__name__} completed successfully")
186
+ return result
187
+ except Exception as e:
188
+ logger.error(f"Error in {func.__name__}: {e}")
189
+ raise
190
+ return wrapper
191
+
192
+ # aiclient.py
193
+
194
+ class AIClient:
195
+ def __init__(self):
196
+ self.client = OpenAI(
197
+ base_url="https://openrouter.ai/api/v1",
198
+ api_key="sk-or-v1-" + os.environ['OPENROUTER_API_KEY']
199
+ )
200
+ self.observability_manager = LLMObservabilityManager()
201
+
202
+ @log_execution
203
+ def generate_response(
204
+ self,
205
+ messages: List[Dict[str, str]],
206
+ model: str = "openai/gpt-4o-mini",
207
+ max_tokens: int = 32000,
208
+ conversation_id: str = None,
209
+ user: str = "anonymous"
210
+ ) -> Optional[str]:
211
+ if not messages:
212
+ return None
213
+
214
+ start_time = time.time()
215
+ response = self.client.chat.completions.create(
216
+ model=model,
217
+ messages=messages,
218
+ max_tokens=max_tokens,
219
+ stream=False
220
+ )
221
+ end_time = time.time()
222
+ latency = end_time - start_time
223
+
224
+ # Log the observation
225
+ self.observability_manager.insert_observation(
226
+ response=response.dict(),
227
+ conversation_id=conversation_id or "default",
228
+ status="success",
229
+ request=json.dumps(messages),
230
+ latency=latency,
231
+ user=user
232
+ )
233
+
234
+ return response.choices[0].message.content
235
+
236
+ @log_execution
237
+ def generate_vision_response(
238
+ self,
239
+ messages: List[Dict[str, Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]]],
240
+ model: str = "google/gemini-flash-1.5-8b",
241
+ max_tokens: int = 32000,
242
+ conversation_id: str = None,
243
+ user: str = "anonymous"
244
+ ) -> Optional[str]:
245
+ if not messages:
246
+ return None
247
+
248
+ start_time = time.time()
249
+ response = self.client.chat.completions.create(
250
+ model=model,
251
+ messages=messages,
252
+ max_tokens=max_tokens,
253
+ stream=False
254
+ )
255
+ end_time = time.time()
256
+ latency = end_time - start_time
257
+
258
+ # Log the observation
259
+ self.observability_manager.insert_observation(
260
+ response=response.dict(),
261
+ conversation_id=conversation_id or "default",
262
+ status="success",
263
+ request=json.dumps(messages),
264
+ latency=latency,
265
+ user=user
266
+ )
267
+
268
+ return response.choices[0].message.content
269
+
270
+
271
+ class VisionTools:
272
+ def __init__(self, ai_client):
273
+ self.ai_client = ai_client
274
+
275
+ async def extract_images_info(self, images: List[UploadFile]) -> str:
276
+ try:
277
+ image_contents = []
278
+ for image in images:
279
+ image_content = await image.read()
280
+ base64_image = base64.b64encode(image_content).decode('utf-8')
281
+ image_contents.append({
282
+ "type": "image_url",
283
+ "image_url": {
284
+ "url": f"data:image/jpeg;base64,{base64_image}"
285
+ }
286
+ })
287
+
288
+ messages = [
289
+ {
290
+ "role": "user",
291
+ "content": [
292
+ {
293
+ "type": "text",
294
+ "text": "Extract the contents of these images in detail in a structured format, focusing on any text, tables, diagrams, or visual elements that might be relevant for document generation."
295
+ },
296
+ *image_contents
297
+ ]
298
+ }
299
+ ]
300
+
301
+ image_context = self.ai_client.generate_vision_response(messages)
302
+ return image_context
303
+ except Exception as e:
304
+ print(f"Error processing images: {str(e)}")
305
+ return ""
306
+
307
+
308
+ class DatabaseManager:
309
+ """Manages database operations."""
310
+
311
+ def __init__(self):
312
+ self.db_params = {
313
+ "dbname": "postgres",
314
+ "user": os.environ['SUPABASE_USER'],
315
+ "password": os.environ['SUPABASE_PASSWORD'],
316
+ "host": "aws-0-us-west-1.pooler.supabase.com",
317
+ "port": "5432"
318
+ }
319
+
320
+ @log_execution
321
+ def update_database(self, user_id: str, user_query: str, response: str) -> None:
322
+ with psycopg2.connect(**self.db_params) as conn:
323
+ with conn.cursor() as cur:
324
+ insert_query = """
325
+ INSERT INTO ai_document_generator (user_id, user_query, response)
326
+ VALUES (%s, %s, %s);
327
+ """
328
+ cur.execute(insert_query, (user_id, user_query, response))
329
+
330
+ class DocumentGenerator:
331
+ def __init__(self, ai_client: AIClient):
332
+ self.ai_client = ai_client
333
+ self.document_outline = None
334
+ self.content_messages = []
335
+
336
+ @staticmethod
337
+ def extract_between_tags(text: str, tag: str) -> str:
338
+ pattern = f"<{tag}>(.*?)</{tag}>"
339
+ match = re.search(pattern, text, re.DOTALL)
340
+ return match.group(1).strip() if match else ""
341
+
342
+ @staticmethod
343
+ def remove_duplicate_title(content: str, title: str, section_number: str) -> str:
344
+ patterns = [
345
+ rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
346
+ rf"^#+\s*{re.escape(title)}",
347
+ rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
348
+ rf"^{re.escape(title)}",
349
+ ]
350
+
351
+ for pattern in patterns:
352
+ content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE)
353
+
354
+ return content.lstrip()
355
+
356
+ @log_execution
357
+ def generate_document_outline(self, query: str, template: bool = False, image_context: str = "", max_retries: int = 3) -> Optional[Dict]:
358
+ messages = [
359
+ {"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM},
360
+ {"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query) if not template else DOCUMENT_TEMPLATE_PROMPT_USER.format(query=query, image_context=image_context)}
361
+ ]
362
+ # Update user content to include image context if provided
363
+ if image_context:
364
+ messages[1]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
365
+
366
+ for attempt in range(max_retries):
367
+ outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o")
368
+ outline_json_text = self.extract_between_tags(outline_response, "output")
369
+
370
+ try:
371
+ self.document_outline = json.loads(outline_json_text)
372
+ return self.document_outline
373
+ except json.JSONDecodeError as e:
374
+ if attempt < max_retries - 1:
375
+ logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}")
376
+ logger.info("Retrying...")
377
+ else:
378
+ logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}")
379
+ return None
380
+
381
+ @log_execution
382
+ def generate_content(self, title: str, content_instruction: str, section_number: str, template: bool = False) -> str:
383
+ SECTION_PROMPT_USER = DOCUMENT_SECTION_PROMPT_USER if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_USER
384
+ self.content_messages.append({
385
+ "role": "user",
386
+ "content": SECTION_PROMPT_USER.format(
387
+ section_or_subsection_title=title,
388
+ content_instruction=content_instruction
389
+ )
390
+ })
391
+ section_response = self.ai_client.generate_response(self.content_messages)
392
+ content = self.extract_between_tags(section_response, "response")
393
+ content = self.remove_duplicate_title(content, title, section_number)
394
+ self.content_messages.append({
395
+ "role": "assistant",
396
+ "content": section_response
397
+ })
398
+ return content
399
+
400
+ class MarkdownConverter:
401
+ @staticmethod
402
+ def slugify(text: str) -> str:
403
+ return re.sub(r'\W+', '-', text.lower())
404
+
405
+ @classmethod
406
+ def generate_toc(cls, sections: List[Dict]) -> str:
407
+ toc = "<div style='page-break-before: always;'></div>\n\n"
408
+ toc += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n"
409
+ toc += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n"
410
+ for section in sections:
411
+ section_number = section['PageNumber']
412
+ section_title = section['Title']
413
+ toc += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n"
414
+
415
+ for subsection in section.get('Subsections', []):
416
+ subsection_number = subsection['PageNumber']
417
+ subsection_title = subsection['Title']
418
+ toc += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n"
419
+
420
+ toc += "</nav>\n\n"
421
+ return toc
422
+
423
+ @classmethod
424
+ def convert_to_markdown(cls, document: Dict) -> str:
425
+ markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n"
426
+ markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n"
427
+ markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n"
428
+ markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n"
429
+ markdown += "</div>\n\n"
430
+
431
+ markdown += cls.generate_toc(document['Sections'])
432
+
433
+ markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n"
434
+
435
+ for section in document['Sections']:
436
+ markdown += "<div style='page-break-before: always;'></div>\n\n"
437
+ section_number = section['PageNumber']
438
+ section_title = section['Title']
439
+ markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n"
440
+ markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n"
441
+
442
+ # for subsection in section.get('Subsections', []):
443
+ # subsection_number = subsection['PageNumber']
444
+ # subsection_title = subsection['Title']
445
+ # markdown += f"<h3 id='{cls.slugify(subsection_title)}' style='color: #34495e;'>{subsection_number} {subsection_title}</h3>\n\n"
446
+ # markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{subsection['Content']}\n\n</div>\n\n"
447
+
448
+ markdown += "</div>"
449
+ return markdown
450
+
451
+ router = APIRouter()
452
+
453
+ class JsonDocumentResponse(BaseModel):
454
+ json_document: Dict
455
+
456
+ # class JsonDocumentRequest(BaseModel):
457
+ # query: str
458
+ # template: bool = False
459
+ # images: Optional[List[UploadFile]] = File(None)
460
+ # documents: Optional[List[UploadFile]] = File(None)
461
+ # conversation_id: str = ""
462
+
463
+ class MarkdownDocumentRequest(BaseModel):
464
+ json_document: Dict
465
+ query: str
466
+ template: bool = False
467
+ conversation_id: str = ""
468
+
469
+ MESSAGE_DELIMITER = b"\n---DELIMITER---\n"
470
+
471
+ def yield_message(message):
472
+ message_json = json.dumps(message, ensure_ascii=False).encode('utf-8')
473
+ return message_json + MESSAGE_DELIMITER
474
+
475
+ async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str, template: bool = False, conversation_id: str = ""):
476
+ document_generator.document_outline = document_outline
477
+ db_manager = DatabaseManager()
478
+ overall_objective = query
479
+ document_layout = json.dumps(document_generator.document_outline, indent=2)
480
+ cache_key = f"image_context_{conversation_id}"
481
+ image_context = await FastAPICache.get_backend().get(cache_key)
482
+
483
+ SECTION_PROMPT_SYSTEM = DOCUMENT_SECTION_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM
484
+ document_generator.content_messages = [
485
+ {
486
+ "role": "system",
487
+ "content": SECTION_PROMPT_SYSTEM.format(
488
+ overall_objective=overall_objective,
489
+ document_layout=document_layout
490
+ )
491
+ }
492
+ ]
493
+ if image_context:
494
+ document_generator.content_messages[0]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
495
+
496
+ for section in document_generator.document_outline["Document"].get("Sections", []):
497
+ section_title = section.get("Title", "")
498
+ section_number = section.get("PageNumber", "")
499
+ content_instruction = section.get("Content", "")
500
+
501
+ section_prompt_content = f"""# {section_number} {section_title}\n\n{content_instruction}\n\n"""
502
+
503
+ for subsection in section.get("Subsections", []):
504
+ subsection_title = subsection.get("Title", "")
505
+ subsection_number = subsection.get("PageNumber", "")
506
+ subsection_content_instruction = subsection.get("Content", "")
507
+ section_prompt_content += f"""## {subsection_number} {subsection_title}\n\n{subsection_content_instruction}\n\n"""
508
+
509
+ content = document_generator.generate_content(section_title, section_prompt_content, section_number, template)
510
+ section["Content"] = content
511
+ yield yield_message({
512
+ "type": "document_section",
513
+ "content": {
514
+ "section_number": section_number,
515
+ "section_title": section_title,
516
+ "content": content
517
+ }
518
+ })
519
+
520
+ markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"])
521
+
522
+ yield yield_message({
523
+ "type": "complete_document",
524
+ "content": {
525
+ "markdown": markdown_document,
526
+ "json": document_generator.document_outline
527
+ },
528
+ });
529
+
530
+ db_manager.update_database("elevatics", query, markdown_document)
531
+
532
+ @router.post("/generate-document/markdown-stream")
533
+ async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest):
534
+ ai_client = AIClient()
535
+ document_generator = DocumentGenerator(ai_client)
536
+
537
+ async def stream_generator():
538
+ try:
539
+ async for chunk in generate_document_stream(document_generator, request.json_document, request.query, request.template, request.conversation_id):
540
+ yield chunk
541
+ except Exception as e:
542
+ yield yield_message({
543
+ "type": "error",
544
+ "content": str(e)
545
+ })
546
+
547
+ return StreamingResponse(stream_generator(), media_type="application/octet-stream")
548
+
549
+
550
+ @cache(expire=600*24*7)
551
+ @router.post("/generate-document/json", response_model=JsonDocumentResponse)
552
+ async def generate_document_outline_endpoint(
553
+ query: str = Form(...),
554
+ template: bool = Form(False),
555
+ conversation_id: str = Form(...),
556
+ # images: Optional[List[UploadFile]] = File(None),
557
+ # documents: Optional[List[UploadFile]] = File(None)
558
+ ):
559
+ ai_client = AIClient()
560
+ document_generator = DocumentGenerator(ai_client)
561
+ vision_tools = VisionTools(ai_client)
562
+
563
+ try:
564
+ image_context = ""
565
+ if images:
566
+ image_context = await vision_tools.extract_images_info(images)
567
+
568
+ # Store the image_context in the cache
569
+ cache_key = f"image_context_{conversation_id}"
570
+ await FastAPICache.get_backend().set(cache_key, image_context, expire=3600) # Cache for 1 hour
571
+
572
+ json_document = document_generator.generate_document_outline(
573
+ query,
574
+ template,
575
+ image_context=image_context
576
+ )
577
+
578
+ if json_document is None:
579
+ raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
580
+
581
+ return JsonDocumentResponse(json_document=json_document)
582
+ except Exception as e:
583
+ raise HTTPException(status_code=500, detail=str(e))
584
+
585
+
586
+ ## OBSERVABILITY
587
+ from uuid import uuid4
588
+ import csv
589
+ from io import StringIO
590
+
591
+ class ObservationResponse(BaseModel):
592
+ observations: List[Dict]
593
+
594
+ def create_csv_response(observations: List[Dict]) -> StreamingResponse:
595
+ def iter_csv(data):
596
+ output = StringIO()
597
+ writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else [])
598
+ writer.writeheader()
599
+ for row in data:
600
+ writer.writerow(row)
601
+ output.seek(0)
602
+ yield output.read()
603
+
604
+ headers = {
605
+ 'Content-Disposition': 'attachment; filename="observations.csv"'
606
+ }
607
+ return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers)
608
+
609
+
610
+ @router.get("/last-observations/{limit}")
611
+ async def get_last_observations(limit: int = 10, format: str = "json"):
612
+ observability_manager = LLMObservabilityManager()
613
+
614
+ try:
615
+ # Get all observations, sorted by created_at in descending order
616
+ all_observations = observability_manager.get_observations()
617
+ all_observations.sort(key=lambda x: x['created_at'], reverse=True)
618
+
619
+ # Get the last conversation_id
620
+ if all_observations:
621
+ last_conversation_id = all_observations[0]['conversation_id']
622
+
623
+ # Filter observations for the last conversation
624
+ last_conversation_observations = [
625
+ obs for obs in all_observations
626
+ if obs['conversation_id'] == last_conversation_id
627
+ ][:limit]
628
+
629
+ if format.lower() == "csv":
630
+ return create_csv_response(last_conversation_observations)
631
+ else:
632
+ return ObservationResponse(observations=last_conversation_observations)
633
+ else:
634
+ if format.lower() == "csv":
635
+ return create_csv_response([])
636
+ else:
637
+ return ObservationResponse(observations=[])
638
+ except Exception as e:
639
+ raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}")
640
+
641
+ ## TEST CACHE
642
+
643
+ class CacheItem(BaseModel):
644
+ key: str
645
+ value: str
646
+
647
+ @router.post("/set-cache")
648
+ async def set_cache(item: CacheItem):
649
+ try:
650
+ # Set the cache with a default expiration of 1 hour (3600 seconds)
651
+ await FastAPICache.get_backend().set(item.key, item.value, expire=3600)
652
+ return {"message": f"Cache set for key: {item.key}"}
653
+ except Exception as e:
654
+ raise HTTPException(status_code=500, detail=f"Failed to set cache: {str(e)}")
655
+
656
+ @router.get("/get-cache/{key}")
657
+ async def get_cache(key: str):
658
+ try:
659
+ value = await FastAPICache.get_backend().get(key)
660
+ if value is None:
661
+ raise HTTPException(status_code=404, detail=f"No cache found for key: {key}")
662
+ return {"key": key, "value": value}
663
+ except Exception as e:
664
+ raise HTTPException(status_code=500, detail=f"Failed to get cache: {str(e)}")