Spaces:
Sleeping
Sleeping
Delete document_generator_v2.py
Browse files- document_generator_v2.py +0 -725
document_generator_v2.py
DELETED
@@ -1,725 +0,0 @@
|
|
1 |
-
# File: prompts.py
|
2 |
-
|
3 |
-
DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
|
4 |
-
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection.
|
5 |
-
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections.
|
6 |
-
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
|
7 |
-
<output>
|
8 |
-
{
|
9 |
-
"Document": {
|
10 |
-
"Title": "Document Title",
|
11 |
-
"Author": "Author Name",
|
12 |
-
"Date": "YYYY-MM-DD",
|
13 |
-
"Version": "1.0",
|
14 |
-
|
15 |
-
"Sections": [
|
16 |
-
{
|
17 |
-
"SectionNumber": "1",
|
18 |
-
"Title": "Section Title",
|
19 |
-
"Content": "Specific prompt or instruction for generating content for this section",
|
20 |
-
"Subsections": [
|
21 |
-
{
|
22 |
-
"SectionNumber": "1.1",
|
23 |
-
"Title": "Subsection Title",
|
24 |
-
"Content": "Specific prompt or instruction for generating content for this subsection"
|
25 |
-
}
|
26 |
-
]
|
27 |
-
}
|
28 |
-
]
|
29 |
-
}
|
30 |
-
}
|
31 |
-
</output>"""
|
32 |
-
|
33 |
-
DOCUMENT_OUTLINE_PROMPT_USER = """<prompt>{query}</prompt>"""
|
34 |
-
|
35 |
-
DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, You need to output only the content requested in the section in the prompt.
|
36 |
-
FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags
|
37 |
-
<overall_objective>{overall_objective}</overall_objective>
|
38 |
-
<document_layout>{document_layout}</document_layout>"""
|
39 |
-
|
40 |
-
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
41 |
-
|
42 |
-
##########################################
|
43 |
-
|
44 |
-
DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM = """You are a document template generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
|
45 |
-
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating template with placeholder text /example content for that particular section or subsection. Specify in each prompt to output as a template and use placeholder text/ tables as necessory.
|
46 |
-
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections.
|
47 |
-
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
|
48 |
-
<output>
|
49 |
-
{
|
50 |
-
"Document": {
|
51 |
-
"Title": "Document Title",
|
52 |
-
"Author": "Author Name",
|
53 |
-
"Date": "YYYY-MM-DD",
|
54 |
-
"Version": "1.0",
|
55 |
-
|
56 |
-
"Sections": [
|
57 |
-
{
|
58 |
-
"SectionNumber": "1",
|
59 |
-
"Title": "Section Title",
|
60 |
-
"Content": "Specific prompt or instruction for generating template for this section",
|
61 |
-
"Subsections": [
|
62 |
-
{
|
63 |
-
"SectionNumber": "1.1",
|
64 |
-
"Title": "Subsection Title",
|
65 |
-
"Content": "Specific prompt or instruction for generating template for this subsection"
|
66 |
-
}
|
67 |
-
]
|
68 |
-
}
|
69 |
-
]
|
70 |
-
}
|
71 |
-
}
|
72 |
-
</output>"""
|
73 |
-
|
74 |
-
DOCUMENT_TEMPLATE_PROMPT_USER = """<prompt>{query}</prompt>"""
|
75 |
-
|
76 |
-
DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM = """You are a document template generator,You need to output only the content requested in the section in the prompt, Use placeholder text/examples/tables wherever required.
|
77 |
-
FORMAT YOUR OUTPUT AS A TEMPLATE ENCLOSED IN <response></response> tags
|
78 |
-
<overall_objective>{overall_objective}</overall_objective>
|
79 |
-
<document_layout>{document_layout}</document_layout>"""
|
80 |
-
|
81 |
-
DOCUMENT_TEMPLATE_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
82 |
-
|
83 |
-
|
84 |
-
# File: llm_observability.py
|
85 |
-
|
86 |
-
import sqlite3
|
87 |
-
import json
|
88 |
-
from datetime import datetime
|
89 |
-
from typing import Dict, Any, List, Optional
|
90 |
-
|
91 |
-
class LLMObservabilityManager:
|
92 |
-
def __init__(self, db_path: str = "llm_observability_v2.db"):
|
93 |
-
self.db_path = db_path
|
94 |
-
self.create_table()
|
95 |
-
|
96 |
-
def create_table(self):
|
97 |
-
with sqlite3.connect(self.db_path) as conn:
|
98 |
-
cursor = conn.cursor()
|
99 |
-
cursor.execute('''
|
100 |
-
CREATE TABLE IF NOT EXISTS llm_observations (
|
101 |
-
id TEXT PRIMARY KEY,
|
102 |
-
conversation_id TEXT,
|
103 |
-
created_at DATETIME,
|
104 |
-
status TEXT,
|
105 |
-
request TEXT,
|
106 |
-
response TEXT,
|
107 |
-
model TEXT,
|
108 |
-
total_tokens INTEGER,
|
109 |
-
prompt_tokens INTEGER,
|
110 |
-
completion_tokens INTEGER,
|
111 |
-
latency FLOAT,
|
112 |
-
user TEXT
|
113 |
-
)
|
114 |
-
''')
|
115 |
-
|
116 |
-
def insert_observation(self, response: Dict[str, Any], conversation_id: str, status: str, request: str, latency: float, user: str):
|
117 |
-
created_at = datetime.fromtimestamp(response['created'])
|
118 |
-
|
119 |
-
with sqlite3.connect(self.db_path) as conn:
|
120 |
-
cursor = conn.cursor()
|
121 |
-
cursor.execute('''
|
122 |
-
INSERT INTO llm_observations
|
123 |
-
(id, conversation_id, created_at, status, request, response, model, total_tokens, prompt_tokens, completion_tokens, latency, user)
|
124 |
-
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
125 |
-
''', (
|
126 |
-
response['id'],
|
127 |
-
conversation_id,
|
128 |
-
created_at,
|
129 |
-
status,
|
130 |
-
request,
|
131 |
-
json.dumps(response['choices'][0]['message']),
|
132 |
-
response['model'],
|
133 |
-
response['usage']['total_tokens'],
|
134 |
-
response['usage']['prompt_tokens'],
|
135 |
-
response['usage']['completion_tokens'],
|
136 |
-
latency,
|
137 |
-
user
|
138 |
-
))
|
139 |
-
|
140 |
-
def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
141 |
-
with sqlite3.connect(self.db_path) as conn:
|
142 |
-
cursor = conn.cursor()
|
143 |
-
if conversation_id:
|
144 |
-
cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,))
|
145 |
-
else:
|
146 |
-
cursor.execute('SELECT * FROM llm_observations ORDER BY created_at')
|
147 |
-
rows = cursor.fetchall()
|
148 |
-
|
149 |
-
column_names = [description[0] for description in cursor.description]
|
150 |
-
return [dict(zip(column_names, row)) for row in rows]
|
151 |
-
|
152 |
-
def get_all_observations(self) -> List[Dict[str, Any]]:
|
153 |
-
return self.get_observations()
|
154 |
-
|
155 |
-
|
156 |
-
# File: app.py
|
157 |
-
import os
|
158 |
-
import json
|
159 |
-
import re
|
160 |
-
import asyncio
|
161 |
-
import time
|
162 |
-
from typing import List, Dict, Optional, Any, Callable, Union
|
163 |
-
from openai import OpenAI
|
164 |
-
import logging
|
165 |
-
import functools
|
166 |
-
from fastapi import APIRouter, HTTPException, Request, UploadFile, File, Depends
|
167 |
-
from fastapi.responses import StreamingResponse
|
168 |
-
from pydantic import BaseModel
|
169 |
-
from fastapi_cache import FastAPICache
|
170 |
-
from fastapi_cache.decorator import cache
|
171 |
-
import psycopg2
|
172 |
-
from datetime import datetime
|
173 |
-
import base64
|
174 |
-
from fastapi import Form
|
175 |
-
from llama_parse import LlamaParse
|
176 |
-
|
177 |
-
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
178 |
-
logger = logging.getLogger(__name__)
|
179 |
-
|
180 |
-
def log_execution(func: Callable) -> Callable:
|
181 |
-
@functools.wraps(func)
|
182 |
-
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
183 |
-
logger.info(f"Executing {func.__name__}")
|
184 |
-
try:
|
185 |
-
result = func(*args, **kwargs)
|
186 |
-
logger.info(f"{func.__name__} completed successfully")
|
187 |
-
return result
|
188 |
-
except Exception as e:
|
189 |
-
logger.error(f"Error in {func.__name__}: {e}")
|
190 |
-
raise
|
191 |
-
return wrapper
|
192 |
-
|
193 |
-
# aiclient.py
|
194 |
-
|
195 |
-
class AIClient:
|
196 |
-
def __init__(self):
|
197 |
-
self.client = OpenAI(
|
198 |
-
base_url="https://openrouter.ai/api/v1",
|
199 |
-
api_key="sk-or-v1-" + os.environ['OPENROUTER_API_KEY']
|
200 |
-
)
|
201 |
-
self.observability_manager = LLMObservabilityManager()
|
202 |
-
|
203 |
-
@log_execution
|
204 |
-
def generate_response(
|
205 |
-
self,
|
206 |
-
messages: List[Dict[str, str]],
|
207 |
-
model: str = "openai/gpt-4o-mini",
|
208 |
-
max_tokens: int = 32000,
|
209 |
-
conversation_id: str = None,
|
210 |
-
user: str = "anonymous"
|
211 |
-
) -> Optional[str]:
|
212 |
-
if not messages:
|
213 |
-
return None
|
214 |
-
|
215 |
-
start_time = time.time()
|
216 |
-
response = self.client.chat.completions.create(
|
217 |
-
model=model,
|
218 |
-
messages=messages,
|
219 |
-
max_tokens=max_tokens,
|
220 |
-
stream=False
|
221 |
-
)
|
222 |
-
end_time = time.time()
|
223 |
-
latency = end_time - start_time
|
224 |
-
|
225 |
-
# Log the observation
|
226 |
-
self.observability_manager.insert_observation(
|
227 |
-
response=response.dict(),
|
228 |
-
conversation_id=conversation_id or "default",
|
229 |
-
status="success",
|
230 |
-
request=json.dumps(messages),
|
231 |
-
latency=latency,
|
232 |
-
user=user
|
233 |
-
)
|
234 |
-
|
235 |
-
return response.choices[0].message.content
|
236 |
-
|
237 |
-
@log_execution
|
238 |
-
def generate_vision_response(
|
239 |
-
self,
|
240 |
-
messages: List[Dict[str, Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]]],
|
241 |
-
model: str = "google/gemini-flash-1.5-8b",
|
242 |
-
max_tokens: int = 32000,
|
243 |
-
conversation_id: str = None,
|
244 |
-
user: str = "anonymous"
|
245 |
-
) -> Optional[str]:
|
246 |
-
if not messages:
|
247 |
-
return None
|
248 |
-
|
249 |
-
start_time = time.time()
|
250 |
-
response = self.client.chat.completions.create(
|
251 |
-
model=model,
|
252 |
-
messages=messages,
|
253 |
-
max_tokens=max_tokens,
|
254 |
-
stream=False
|
255 |
-
)
|
256 |
-
end_time = time.time()
|
257 |
-
latency = end_time - start_time
|
258 |
-
|
259 |
-
# Log the observation
|
260 |
-
self.observability_manager.insert_observation(
|
261 |
-
response=response.dict(),
|
262 |
-
conversation_id=conversation_id or "default",
|
263 |
-
status="success",
|
264 |
-
request=json.dumps(messages),
|
265 |
-
latency=latency,
|
266 |
-
user=user
|
267 |
-
)
|
268 |
-
|
269 |
-
return response.choices[0].message.content
|
270 |
-
|
271 |
-
|
272 |
-
class VisionTools:
|
273 |
-
def __init__(self, ai_client):
|
274 |
-
self.ai_client = ai_client
|
275 |
-
|
276 |
-
async def extract_images_info(self, images: List[UploadFile]) -> str:
|
277 |
-
try:
|
278 |
-
image_contents = []
|
279 |
-
for image in images:
|
280 |
-
image_content = await image.read()
|
281 |
-
base64_image = base64.b64encode(image_content).decode('utf-8')
|
282 |
-
image_contents.append({
|
283 |
-
"type": "image_url",
|
284 |
-
"image_url": {
|
285 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
286 |
-
}
|
287 |
-
})
|
288 |
-
|
289 |
-
messages = [
|
290 |
-
{
|
291 |
-
"role": "user",
|
292 |
-
"content": [
|
293 |
-
{
|
294 |
-
"type": "text",
|
295 |
-
"text": "Extract the contents of these images in detail in a structured format, focusing on any text, tables, diagrams, or visual elements that might be relevant for document generation."
|
296 |
-
},
|
297 |
-
*image_contents
|
298 |
-
]
|
299 |
-
}
|
300 |
-
]
|
301 |
-
|
302 |
-
image_context = self.ai_client.generate_vision_response(messages)
|
303 |
-
return image_context
|
304 |
-
except Exception as e:
|
305 |
-
print(f"Error processing images: {str(e)}")
|
306 |
-
return ""
|
307 |
-
|
308 |
-
|
309 |
-
class DatabaseManager:
|
310 |
-
"""Manages database operations."""
|
311 |
-
|
312 |
-
def __init__(self):
|
313 |
-
self.db_params = {
|
314 |
-
"dbname": "postgres",
|
315 |
-
"user": os.environ['SUPABASE_USER'],
|
316 |
-
"password": os.environ['SUPABASE_PASSWORD'],
|
317 |
-
"host": "aws-0-us-west-1.pooler.supabase.com",
|
318 |
-
"port": "5432"
|
319 |
-
}
|
320 |
-
|
321 |
-
@log_execution
|
322 |
-
def update_database(self, user_id: str, user_query: str, response: str) -> None:
|
323 |
-
with psycopg2.connect(**self.db_params) as conn:
|
324 |
-
with conn.cursor() as cur:
|
325 |
-
insert_query = """
|
326 |
-
INSERT INTO ai_document_generator (user_id, user_query, response)
|
327 |
-
VALUES (%s, %s, %s);
|
328 |
-
"""
|
329 |
-
cur.execute(insert_query, (user_id, user_query, response))
|
330 |
-
|
331 |
-
class DocumentGenerator:
|
332 |
-
def __init__(self, ai_client: AIClient):
|
333 |
-
self.ai_client = ai_client
|
334 |
-
self.document_outline = None
|
335 |
-
self.content_messages = []
|
336 |
-
|
337 |
-
@staticmethod
|
338 |
-
def extract_between_tags(text: str, tag: str) -> str:
|
339 |
-
pattern = f"<{tag}>(.*?)</{tag}>"
|
340 |
-
match = re.search(pattern, text, re.DOTALL)
|
341 |
-
return match.group(1).strip() if match else ""
|
342 |
-
|
343 |
-
@staticmethod
|
344 |
-
def remove_duplicate_title(content: str, title: str, section_number: str) -> str:
|
345 |
-
patterns = [
|
346 |
-
rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
|
347 |
-
rf"^#+\s*{re.escape(title)}",
|
348 |
-
rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
|
349 |
-
rf"^{re.escape(title)}",
|
350 |
-
]
|
351 |
-
|
352 |
-
for pattern in patterns:
|
353 |
-
content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE)
|
354 |
-
|
355 |
-
return content.lstrip()
|
356 |
-
|
357 |
-
@log_execution
|
358 |
-
def generate_document_outline(self, query: str, template: bool = False, image_context: str = "", max_retries: int = 3) -> Optional[Dict]:
|
359 |
-
messages = [
|
360 |
-
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM},
|
361 |
-
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query) if not template else DOCUMENT_TEMPLATE_PROMPT_USER.format(query=query, image_context=image_context)}
|
362 |
-
]
|
363 |
-
# Update user content to include image context if provided
|
364 |
-
if image_context:
|
365 |
-
messages[1]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
|
366 |
-
|
367 |
-
for attempt in range(max_retries):
|
368 |
-
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
369 |
-
outline_json_text = self.extract_between_tags(outline_response, "output")
|
370 |
-
|
371 |
-
try:
|
372 |
-
self.document_outline = json.loads(outline_json_text)
|
373 |
-
return self.document_outline
|
374 |
-
except json.JSONDecodeError as e:
|
375 |
-
if attempt < max_retries - 1:
|
376 |
-
logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}")
|
377 |
-
logger.info("Retrying...")
|
378 |
-
else:
|
379 |
-
logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}")
|
380 |
-
return None
|
381 |
-
|
382 |
-
@log_execution
|
383 |
-
def generate_content(self, title: str, content_instruction: str, section_number: str, template: bool = False) -> str:
|
384 |
-
SECTION_PROMPT_USER = DOCUMENT_SECTION_PROMPT_USER if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_USER
|
385 |
-
self.content_messages.append({
|
386 |
-
"role": "user",
|
387 |
-
"content": SECTION_PROMPT_USER.format(
|
388 |
-
section_or_subsection_title=title,
|
389 |
-
content_instruction=content_instruction
|
390 |
-
)
|
391 |
-
})
|
392 |
-
section_response = self.ai_client.generate_response(self.content_messages)
|
393 |
-
content = self.extract_between_tags(section_response, "response")
|
394 |
-
content = self.remove_duplicate_title(content, title, section_number)
|
395 |
-
self.content_messages.append({
|
396 |
-
"role": "assistant",
|
397 |
-
"content": section_response
|
398 |
-
})
|
399 |
-
return content
|
400 |
-
|
401 |
-
class MarkdownConverter:
|
402 |
-
@staticmethod
|
403 |
-
def slugify(text: str) -> str:
|
404 |
-
return re.sub(r'\W+', '-', text.lower())
|
405 |
-
|
406 |
-
@classmethod
|
407 |
-
def generate_toc(cls, sections: List[Dict]) -> str:
|
408 |
-
toc = "<div style='page-break-before: always;'></div>\n\n"
|
409 |
-
toc += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n"
|
410 |
-
toc += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n"
|
411 |
-
for section in sections:
|
412 |
-
section_number = section['SectionNumber']
|
413 |
-
section_title = section['Title']
|
414 |
-
toc += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n"
|
415 |
-
|
416 |
-
for subsection in section.get('Subsections', []):
|
417 |
-
subsection_number = subsection['SectionNumber']
|
418 |
-
subsection_title = subsection['Title']
|
419 |
-
toc += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n"
|
420 |
-
|
421 |
-
toc += "</nav>\n\n"
|
422 |
-
return toc
|
423 |
-
|
424 |
-
@classmethod
|
425 |
-
def convert_to_markdown(cls, document: Dict) -> str:
|
426 |
-
markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n"
|
427 |
-
markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n"
|
428 |
-
markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n"
|
429 |
-
markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n"
|
430 |
-
markdown += "</div>\n\n"
|
431 |
-
|
432 |
-
markdown += cls.generate_toc(document['Sections'])
|
433 |
-
|
434 |
-
markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n"
|
435 |
-
|
436 |
-
for section in document['Sections']:
|
437 |
-
markdown += "<div style='page-break-before: always;'></div>\n\n"
|
438 |
-
section_number = section['SectionNumber']
|
439 |
-
section_title = section['Title']
|
440 |
-
markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n"
|
441 |
-
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n"
|
442 |
-
|
443 |
-
for subsection in section.get('Subsections', []):
|
444 |
-
subsection_number = subsection['SectionNumber']
|
445 |
-
subsection_title = subsection['Title']
|
446 |
-
markdown += f"<h3 id='{cls.slugify(subsection_title)}' style='color: #34495e;'>{subsection_number} {subsection_title}</h3>\n\n"
|
447 |
-
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{subsection['Content']}\n\n</div>\n\n"
|
448 |
-
|
449 |
-
markdown += "</div>"
|
450 |
-
return markdown
|
451 |
-
|
452 |
-
async def load_documents(documents: List[UploadFile]) -> List[str]:
|
453 |
-
"""
|
454 |
-
Load and parse documents using LlamaParse.
|
455 |
-
|
456 |
-
Args:
|
457 |
-
documents (List[UploadFile]): List of uploaded document files.
|
458 |
-
|
459 |
-
Returns:
|
460 |
-
List[str]: List of parsed document contents.
|
461 |
-
"""
|
462 |
-
parser = LlamaParse(
|
463 |
-
api_key=os.getenv("LLAMA_PARSE_API_KEY"),
|
464 |
-
result_type="markdown",
|
465 |
-
num_workers=4,
|
466 |
-
verbose=True,
|
467 |
-
language="en",
|
468 |
-
)
|
469 |
-
|
470 |
-
# Save uploaded files temporarily
|
471 |
-
temp_files = []
|
472 |
-
for doc in documents:
|
473 |
-
temp_file_path = f"/tmp/{doc.filename}"
|
474 |
-
with open(temp_file_path, "wb") as buffer:
|
475 |
-
content = await doc.read()
|
476 |
-
buffer.write(content)
|
477 |
-
temp_files.append(temp_file_path)
|
478 |
-
|
479 |
-
try:
|
480 |
-
# Use LlamaParse to extract content
|
481 |
-
print(f"processing files {str(temp_files)}")
|
482 |
-
parsed_documents = await parser.aload_data(temp_files)
|
483 |
-
documents_list = [doc.text for doc in parsed_documents]
|
484 |
-
return documents_list
|
485 |
-
finally:
|
486 |
-
# Clean up temporary files
|
487 |
-
for temp_file in temp_files:
|
488 |
-
os.remove(temp_file)
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
router = APIRouter()
|
493 |
-
|
494 |
-
class JsonDocumentResponse(BaseModel):
|
495 |
-
json_document: Dict
|
496 |
-
|
497 |
-
# class JsonDocumentRequest(BaseModel):
|
498 |
-
# query: str
|
499 |
-
# template: bool = False
|
500 |
-
# images: Optional[List[UploadFile]] = File(None)
|
501 |
-
# documents: Optional[List[UploadFile]] = File(None)
|
502 |
-
# conversation_id: str = ""
|
503 |
-
|
504 |
-
class MarkdownDocumentRequest(BaseModel):
|
505 |
-
json_document: Dict
|
506 |
-
query: str
|
507 |
-
template: bool = False
|
508 |
-
conversation_id: str = ""
|
509 |
-
|
510 |
-
MESSAGE_DELIMITER = b"\n---DELIMITER---\n"
|
511 |
-
|
512 |
-
def yield_message(message):
|
513 |
-
message_json = json.dumps(message, ensure_ascii=False).encode('utf-8')
|
514 |
-
return message_json + MESSAGE_DELIMITER
|
515 |
-
|
516 |
-
async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str, template: bool = False, conversation_id: str = ""):
|
517 |
-
document_generator.document_outline = document_outline
|
518 |
-
db_manager = DatabaseManager()
|
519 |
-
overall_objective = query
|
520 |
-
document_layout = json.dumps(document_generator.document_outline, indent=2)
|
521 |
-
cache_key = f"image_context_{conversation_id}"
|
522 |
-
image_context = await FastAPICache.get_backend().get(cache_key)
|
523 |
-
|
524 |
-
SECTION_PROMPT_SYSTEM = DOCUMENT_SECTION_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM
|
525 |
-
document_generator.content_messages = [
|
526 |
-
{
|
527 |
-
"role": "system",
|
528 |
-
"content": SECTION_PROMPT_SYSTEM.format(
|
529 |
-
overall_objective=overall_objective,
|
530 |
-
document_layout=document_layout
|
531 |
-
)
|
532 |
-
}
|
533 |
-
]
|
534 |
-
if image_context:
|
535 |
-
document_generator.content_messages[0]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
|
536 |
-
|
537 |
-
for section in document_generator.document_outline["Document"].get("Sections", []):
|
538 |
-
section_title = section.get("Title", "")
|
539 |
-
section_number = section.get("SectionNumber", "")
|
540 |
-
content_instruction = section.get("Content", "")
|
541 |
-
logging.info(f"Generating content for section: {section_title}")
|
542 |
-
content = document_generator.generate_content(section_title, content_instruction, section_number, template)
|
543 |
-
section["Content"] = content
|
544 |
-
yield yield_message({
|
545 |
-
"type": "document_section",
|
546 |
-
"content": {
|
547 |
-
"section_number": section_number,
|
548 |
-
"section_title": section_title,
|
549 |
-
"content": content
|
550 |
-
}
|
551 |
-
})
|
552 |
-
|
553 |
-
for subsection in section.get("Subsections", []):
|
554 |
-
subsection_title = subsection.get("Title", "")
|
555 |
-
subsection_number = subsection.get("SectionNumber", "")
|
556 |
-
subsection_content_instruction = subsection.get("Content", "")
|
557 |
-
logging.info(f"Generating content for subsection: {subsection_title}")
|
558 |
-
content = document_generator.generate_content(subsection_title, subsection_content_instruction, subsection_number, template)
|
559 |
-
subsection["Content"] = content
|
560 |
-
yield yield_message({
|
561 |
-
"type": "document_section",
|
562 |
-
"content": {
|
563 |
-
"section_number": subsection_number,
|
564 |
-
"section_title": subsection_title,
|
565 |
-
"content": content
|
566 |
-
}
|
567 |
-
})
|
568 |
-
|
569 |
-
markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"])
|
570 |
-
|
571 |
-
yield yield_message({
|
572 |
-
"type": "complete_document",
|
573 |
-
"content": {
|
574 |
-
"markdown": markdown_document,
|
575 |
-
"json": document_generator.document_outline
|
576 |
-
},
|
577 |
-
});
|
578 |
-
|
579 |
-
db_manager.update_database("elevatics", query, markdown_document)
|
580 |
-
|
581 |
-
@router.post("/generate-document/markdown-stream")
|
582 |
-
async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest):
|
583 |
-
ai_client = AIClient()
|
584 |
-
document_generator = DocumentGenerator(ai_client)
|
585 |
-
|
586 |
-
async def stream_generator():
|
587 |
-
try:
|
588 |
-
async for chunk in generate_document_stream(document_generator, request.json_document, request.query, request.template, request.conversation_id):
|
589 |
-
yield chunk
|
590 |
-
except Exception as e:
|
591 |
-
yield yield_message({
|
592 |
-
"type": "error",
|
593 |
-
"content": str(e)
|
594 |
-
})
|
595 |
-
|
596 |
-
return StreamingResponse(stream_generator(), media_type="application/octet-stream")
|
597 |
-
|
598 |
-
|
599 |
-
@cache(expire=600*24*7)
|
600 |
-
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
601 |
-
async def generate_document_outline_endpoint(
|
602 |
-
query: str = Form(...),
|
603 |
-
template: bool = Form(False),
|
604 |
-
conversation_id: str = Form(...),
|
605 |
-
images: Optional[List[UploadFile]] = File(None),
|
606 |
-
documents: Optional[List[UploadFile]] = File(None)
|
607 |
-
):
|
608 |
-
ai_client = AIClient()
|
609 |
-
document_generator = DocumentGenerator(ai_client)
|
610 |
-
vision_tools = VisionTools(ai_client)
|
611 |
-
|
612 |
-
try:
|
613 |
-
# Handle image processing
|
614 |
-
image_context = ""
|
615 |
-
if images:
|
616 |
-
image_context = await vision_tools.extract_images_info(images)
|
617 |
-
# Store the image_context in the cache
|
618 |
-
image_cache_key = f"image_context_{conversation_id}"
|
619 |
-
await FastAPICache.get_backend().set(image_cache_key, image_context, expire=3600) # Cache for 1 hour
|
620 |
-
|
621 |
-
# Handle document processing using the new load_documents function
|
622 |
-
documents_list = []
|
623 |
-
if documents:
|
624 |
-
documents_list = await load_documents(documents)
|
625 |
-
# Store the documents_list in the cache
|
626 |
-
docs_cache_key = f"documents_list_{conversation_id}"
|
627 |
-
print("saving document as cache key:",docs_cache_key)
|
628 |
-
await FastAPICache.get_backend().set(docs_cache_key, documents_list, expire=3600) # Cache for 1 hour
|
629 |
-
|
630 |
-
# Generate document outline
|
631 |
-
json_document = document_generator.generate_document_outline(
|
632 |
-
query,
|
633 |
-
template,
|
634 |
-
image_context=image_context,
|
635 |
-
#documents_context=documents_list
|
636 |
-
)
|
637 |
-
|
638 |
-
if json_document is None:
|
639 |
-
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
640 |
-
|
641 |
-
return JsonDocumentResponse(json_document=json_document)
|
642 |
-
|
643 |
-
except Exception as e:
|
644 |
-
raise HTTPException(status_code=500, detail=str(e))
|
645 |
-
|
646 |
-
|
647 |
-
## OBSERVABILITY
|
648 |
-
from uuid import uuid4
|
649 |
-
import csv
|
650 |
-
from io import StringIO
|
651 |
-
|
652 |
-
class ObservationResponse(BaseModel):
|
653 |
-
observations: List[Dict]
|
654 |
-
|
655 |
-
def create_csv_response(observations: List[Dict]) -> StreamingResponse:
|
656 |
-
def iter_csv(data):
|
657 |
-
output = StringIO()
|
658 |
-
writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else [])
|
659 |
-
writer.writeheader()
|
660 |
-
for row in data:
|
661 |
-
writer.writerow(row)
|
662 |
-
output.seek(0)
|
663 |
-
yield output.read()
|
664 |
-
|
665 |
-
headers = {
|
666 |
-
'Content-Disposition': 'attachment; filename="observations.csv"'
|
667 |
-
}
|
668 |
-
return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers)
|
669 |
-
|
670 |
-
|
671 |
-
@router.get("/last-observations/{limit}")
|
672 |
-
async def get_last_observations(limit: int = 10, format: str = "json"):
|
673 |
-
observability_manager = LLMObservabilityManager()
|
674 |
-
|
675 |
-
try:
|
676 |
-
# Get all observations, sorted by created_at in descending order
|
677 |
-
all_observations = observability_manager.get_observations()
|
678 |
-
all_observations.sort(key=lambda x: x['created_at'], reverse=True)
|
679 |
-
|
680 |
-
# Get the last conversation_id
|
681 |
-
if all_observations:
|
682 |
-
last_conversation_id = all_observations[0]['conversation_id']
|
683 |
-
|
684 |
-
# Filter observations for the last conversation
|
685 |
-
last_conversation_observations = [
|
686 |
-
obs for obs in all_observations
|
687 |
-
if obs['conversation_id'] == last_conversation_id
|
688 |
-
][:limit]
|
689 |
-
|
690 |
-
if format.lower() == "csv":
|
691 |
-
return create_csv_response(last_conversation_observations)
|
692 |
-
else:
|
693 |
-
return ObservationResponse(observations=last_conversation_observations)
|
694 |
-
else:
|
695 |
-
if format.lower() == "csv":
|
696 |
-
return create_csv_response([])
|
697 |
-
else:
|
698 |
-
return ObservationResponse(observations=[])
|
699 |
-
except Exception as e:
|
700 |
-
raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}")
|
701 |
-
|
702 |
-
## TEST CACHE
|
703 |
-
|
704 |
-
class CacheItem(BaseModel):
|
705 |
-
key: str
|
706 |
-
value: str
|
707 |
-
|
708 |
-
@router.post("/set-cache")
|
709 |
-
async def set_cache(item: CacheItem):
|
710 |
-
try:
|
711 |
-
# Set the cache with a default expiration of 1 hour (3600 seconds)
|
712 |
-
await FastAPICache.get_backend().set(item.key, item.value, expire=3600)
|
713 |
-
return {"message": f"Cache set for key: {item.key}"}
|
714 |
-
except Exception as e:
|
715 |
-
raise HTTPException(status_code=500, detail=f"Failed to set cache: {str(e)}")
|
716 |
-
|
717 |
-
@router.get("/get-cache/{key}")
|
718 |
-
async def get_cache(key: str):
|
719 |
-
try:
|
720 |
-
value = await FastAPICache.get_backend().get(key)
|
721 |
-
if value is None:
|
722 |
-
raise HTTPException(status_code=404, detail=f"No cache found for key: {key}")
|
723 |
-
return {"key": key, "value": value}
|
724 |
-
except Exception as e:
|
725 |
-
raise HTTPException(status_code=500, detail=f"Failed to get cache: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|