import gradio as gr import pandas as pd import numpy as np from data_proc import load_equity_data, load_yield_curve_data, load_credit_spread_data from data_proc import plot_treasury_curves, plot_credit_spreads loser_frame, largest_frame = load_equity_data(False) yc_frame = load_yield_curve_data(False) spread_frame = load_credit_spread_data(False) with gr.Blocks() as crisis_dashboard: gr.Markdown("
Banking Crisis Dashboard
") with gr.Tab("Bank Performance"): with gr.Row(): with gr.Column(): gr.Markdown("##
Worst performing banks
") gr.DataFrame(loser_frame) with gr.Column(): gr.Markdown("##
Largest bank performance
") gr.DataFrame(largest_frame) gr.Markdown("###
*performance since 3/8/2023
") with gr.Row(): with gr.Column(): gr.Markdown("## Failed banks") gr.DataFrame(pd.DataFrame(list(zip(['SBNY','SIVB'], ['Signature Bank', 'SVB Financial Group'])), columns=['Ticker','Bank Name'])) with gr.Tab("Interest Rates"): with gr.Row(): with gr.Column(): gr.Markdown("##
Treasury yield curve
") gr.Plot(plot_treasury_curves(yc_frame)) with gr.Column(): gr.Markdown("##
Credit spreads
") gr.Plot(plot_credit_spreads(spread_frame)) gr.Markdown("###
Data Source: FRED
") #with gr.Tab("Fed Balance Sheet"): # seed = gr.Number(label="Seed", elem_id="seed", every=int, value=random.randint(0,2147483647)) #with gr.Tab("Bank Balance Sheets"): # scale = gr.Number(label="Guidance scale", elem_id='scale', value=7.5) #text.submit(infer, inputs=[text, style,steps, seed, scale], outputs=gallery) #btn.click(infer, inputs=[text, style,steps, seed, scale], outputs=gallery) crisis_dashboard.launch()