import gradio as gr
import pandas as pd
import numpy as np
from data_proc import load_equity_data, load_yield_curve_data, load_credit_spread_data
from data_proc import plot_treasury_curves, plot_credit_spreads
loser_frame, largest_frame = load_equity_data(False)
yc_frame = load_yield_curve_data(False)
spread_frame = load_credit_spread_data(False)
with gr.Blocks() as crisis_dashboard:
gr.Markdown("
Banking Crisis Dashboard")
with gr.Tab("Bank Performance"):
with gr.Row():
with gr.Column():
gr.Markdown("## Worst performing banks")
gr.DataFrame(loser_frame)
with gr.Column():
gr.Markdown("## Largest bank performance")
gr.DataFrame(largest_frame)
gr.Markdown("### *performance since 3/8/2023")
with gr.Row():
with gr.Column():
gr.Markdown("## Failed banks")
gr.DataFrame(pd.DataFrame(list(zip(['SBNY','SIVB'], ['Signature Bank', 'SVB Financial Group'])), columns=['Ticker','Bank Name']))
with gr.Tab("Interest Rates"):
with gr.Row():
with gr.Column():
gr.Markdown("## Treasury yield curve")
gr.Plot(plot_treasury_curves(yc_frame))
with gr.Column():
gr.Markdown("## Credit spreads")
gr.Plot(plot_credit_spreads(spread_frame))
gr.Markdown("### Data Source: FRED")
#with gr.Tab("Fed Balance Sheet"):
# seed = gr.Number(label="Seed", elem_id="seed", every=int, value=random.randint(0,2147483647))
#with gr.Tab("Bank Balance Sheets"):
# scale = gr.Number(label="Guidance scale", elem_id='scale', value=7.5)
#text.submit(infer, inputs=[text, style,steps, seed, scale], outputs=gallery)
#btn.click(infer, inputs=[text, style,steps, seed, scale], outputs=gallery)
crisis_dashboard.launch()