test-finetuned / app.py
pyakhurel's picture
Update app.py
0c99222
raw
history blame
4.28 kB
import torch
import gradio as gr
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
import bitsandbytes
import accelerate
adapters_name = "1littlecoder/mistral-7b-mj-finetuned"
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"
bnb_config = transformers.BitsAndBytesConfig(
load_in_8bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_8bit=True,
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
device_map='auto'
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.bos_token_id = 1
stop_token_ids = [0]
print(f"Successfully loaded the model {model_name} into memory")
def remove_substring(original_string, substring_to_remove):
# Replace the substring with an empty string
result_string = original_string.replace(substring_to_remove, '')
return result_string
def list_to_string(input_list, delimiter=" "):
"""
Convert a list to a string, joining elements with the specified delimiter.
:param input_list: The list to convert to a string.
:param delimiter: The separator to use between elements (default is a space).
:return: A string composed of list elements separated by the delimiter.
"""
return delimiter.join(map(str, input_list))
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False)
model_input = encoded
generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True)
list_output = tokenizer.batch_decode(generated_ids)
string_output = list_to_string(list_output)
possible_output = remove_substring(string_output,formatted_prompt)
return possible_output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. πŸ’¬<h3><center>")
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. πŸ“š<h3><center>")
gr.ChatInterface(
generate,
additional_inputs=additional_inputs,
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
)
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)