Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from peft import PeftModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import transformers | |
adapters_name = "1littlecoder/mistral-7b-mj-finetuned" | |
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded" | |
device = "cuda" | |
bnb_config = transformers.BitsAndBytesConfig( | |
load_in_8bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
load_in_8bit=True, | |
torch_dtype=torch.bfloat16, | |
quantization_config=bnb_config, | |
device_map='auto' | |
) | |
model = PeftModel.from_pretrained(model, adapters_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.bos_token_id = 1 | |
stop_token_ids = [0] | |
print(f"Successfully loaded the model {model_name} into memory") | |
def remove_substring(original_string, substring_to_remove): | |
# Replace the substring with an empty string | |
result_string = original_string.replace(substring_to_remove, '') | |
return result_string | |
def list_to_string(input_list, delimiter=" "): | |
""" | |
Convert a list to a string, joining elements with the specified delimiter. | |
:param input_list: The list to convert to a string. | |
:param delimiter: The separator to use between elements (default is a space). | |
:return: A string composed of list elements separated by the delimiter. | |
""" | |
return delimiter.join(map(str, input_list)) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False) | |
model_input = encoded | |
model.to(device) | |
generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True) | |
list_output = tokenizer.batch_decode(generated_ids) | |
string_output = list_to_string(list_output) | |
possible_output = remove_substring(string_output,formatted_prompt) | |
return possible_output | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>") | |
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>") | |
gr.ChatInterface( | |
generate, | |
additional_inputs=additional_inputs, | |
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] | |
) | |
demo.queue(concurrency_count=75, max_size=100).launch(debug=True) | |