Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from peft import PeftModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import transformers
|
6 |
|
7 |
-
|
|
|
8 |
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"
|
9 |
device = "cuda"
|
10 |
|
@@ -22,7 +23,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
22 |
quantization_config=bnb_config,
|
23 |
device_map='auto'
|
24 |
)
|
25 |
-
|
26 |
model = PeftModel.from_pretrained(model, adapters_name)
|
27 |
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -30,9 +30,22 @@ tokenizer.bos_token_id = 1
|
|
30 |
|
31 |
stop_token_ids = [0]
|
32 |
|
|
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def format_prompt(message, history):
|
38 |
prompt = "<s>"
|
@@ -61,19 +74,17 @@ def generate(
|
|
61 |
|
62 |
formatted_prompt = format_prompt(prompt, history)
|
63 |
|
64 |
-
|
65 |
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False)
|
66 |
model_input = encoded
|
67 |
model.to(device)
|
68 |
-
generated_ids = model.generate(**model_input, max_new_tokens=
|
69 |
-
|
70 |
-
|
71 |
-
output = ""
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
|
79 |
additional_inputs=[
|
@@ -117,9 +128,9 @@ additional_inputs=[
|
|
117 |
|
118 |
css = """
|
119 |
#mkd {
|
120 |
-
height: 500px;
|
121 |
-
overflow: auto;
|
122 |
-
border: 1px solid #ccc;
|
123 |
}
|
124 |
"""
|
125 |
|
@@ -133,4 +144,5 @@ with gr.Blocks(css=css) as demo:
|
|
133 |
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
|
134 |
)
|
135 |
|
136 |
-
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import gradio as gr
|
3 |
from peft import PeftModel
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import transformers
|
6 |
|
7 |
+
|
8 |
+
adapters_name = "1littlecoder/mistral-7b-mj-finetuned"
|
9 |
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"
|
10 |
device = "cuda"
|
11 |
|
|
|
23 |
quantization_config=bnb_config,
|
24 |
device_map='auto'
|
25 |
)
|
|
|
26 |
model = PeftModel.from_pretrained(model, adapters_name)
|
27 |
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
30 |
|
31 |
stop_token_ids = [0]
|
32 |
|
33 |
+
print(f"Successfully loaded the model {model_name} into memory")
|
34 |
|
35 |
+
def remove_substring(original_string, substring_to_remove):
|
36 |
+
# Replace the substring with an empty string
|
37 |
+
result_string = original_string.replace(substring_to_remove, '')
|
38 |
+
return result_string
|
39 |
|
40 |
+
def list_to_string(input_list, delimiter=" "):
|
41 |
+
"""
|
42 |
+
Convert a list to a string, joining elements with the specified delimiter.
|
43 |
|
44 |
+
:param input_list: The list to convert to a string.
|
45 |
+
:param delimiter: The separator to use between elements (default is a space).
|
46 |
+
:return: A string composed of list elements separated by the delimiter.
|
47 |
+
"""
|
48 |
+
return delimiter.join(map(str, input_list))
|
49 |
|
50 |
def format_prompt(message, history):
|
51 |
prompt = "<s>"
|
|
|
74 |
|
75 |
formatted_prompt = format_prompt(prompt, history)
|
76 |
|
|
|
77 |
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False)
|
78 |
model_input = encoded
|
79 |
model.to(device)
|
80 |
+
generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True)
|
81 |
+
|
|
|
|
|
82 |
|
83 |
+
list_output = tokenizer.batch_decode(generated_ids)
|
84 |
+
string_output = list_to_string(list_output)
|
85 |
+
possible_output = remove_substring(string_output,formatted_prompt)
|
86 |
+
|
87 |
+
return possible_output
|
88 |
|
89 |
|
90 |
additional_inputs=[
|
|
|
128 |
|
129 |
css = """
|
130 |
#mkd {
|
131 |
+
height: 500px;
|
132 |
+
overflow: auto;
|
133 |
+
border: 1px solid #ccc;
|
134 |
}
|
135 |
"""
|
136 |
|
|
|
144 |
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
|
145 |
)
|
146 |
|
147 |
+
demo.queue(concurrency_count=75, max_size=100).launch(debug=True)
|
148 |
+
|