Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,39 @@
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
)
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def format_prompt(message, history):
|
10 |
prompt = "<s>"
|
@@ -33,7 +62,13 @@ def generate(
|
|
33 |
|
34 |
formatted_prompt = format_prompt(prompt, history)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
output = ""
|
38 |
|
39 |
for response in stream:
|
|
|
1 |
from huggingface_hub import InferenceClient
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from peft import PeftModel
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import transformers
|
7 |
|
8 |
+
adapters_name = "pyakhurel/mistral-7b-mj-finetuned"
|
9 |
+
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"
|
10 |
+
device = "cuda"
|
11 |
+
|
12 |
+
bnb_config = transformers.BitsAndBytesConfig(
|
13 |
+
load_in_4bit=True,
|
14 |
+
bnb_4bit_use_double_quant=True,
|
15 |
+
bnb_4bit_quant_type="nf4",
|
16 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
17 |
+
)
|
18 |
+
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_name,
|
21 |
+
load_in_4bit=True,
|
22 |
+
torch_dtype=torch.bfloat16,
|
23 |
+
quantization_config=bnb_config,
|
24 |
+
device_map='auto'
|
25 |
)
|
26 |
|
27 |
+
model = PeftModel.from_pretrained(model, adapters_name)
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
tokenizer.bos_token_id = 1
|
31 |
+
|
32 |
+
stop_token_ids = [0]
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
|
38 |
def format_prompt(message, history):
|
39 |
prompt = "<s>"
|
|
|
62 |
|
63 |
formatted_prompt = format_prompt(prompt, history)
|
64 |
|
65 |
+
|
66 |
+
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False)
|
67 |
+
model_input = encoded
|
68 |
+
model.to(device)
|
69 |
+
generated_ids = model.generate(**model_input, max_new_tokens=1048, do_sample=True)
|
70 |
+
stream = tokenizer.batch_decode(generated_ids)
|
71 |
+
|
72 |
output = ""
|
73 |
|
74 |
for response in stream:
|