import torch
import gradio as gr
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import transformers
adapters_name = "1littlecoder/mistral-7b-mj-finetuned"
model_name = "bn22/Mistral-7B-Instruct-v0.1-sharded"
bnb_config = transformers.BitsAndBytesConfig(
load_in_8bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
load_in_8bit=True,
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
device_map='auto'
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.bos_token_id = 1
stop_token_ids = [0]
print(f"Successfully loaded the model {model_name} into memory")
def remove_substring(original_string, substring_to_remove):
# Replace the substring with an empty string
result_string = original_string.replace(substring_to_remove, '')
return result_string
def list_to_string(input_list, delimiter=" "):
"""
Convert a list to a string, joining elements with the specified delimiter.
:param input_list: The list to convert to a string.
:param delimiter: The separator to use between elements (default is a space).
:return: A string composed of list elements separated by the delimiter.
"""
return delimiter.join(map(str, input_list))
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
encoded = tokenizer(formatted_prompt, return_tensors="pt", add_special_tokens=False)
model_input = encoded
generated_ids = model.generate(**model_input, max_new_tokens=200, do_sample=True)
list_output = tokenizer.batch_decode(generated_ids)
string_output = list_to_string(list_output)
possible_output = remove_substring(string_output,formatted_prompt)
return possible_output
additional_inputs=[
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("