File size: 1,930 Bytes
babeaf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
from typing import List

from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models import ChatAnthropic
from langchain.schema import BaseMessage, HumanMessage

from realtime_ai_character.database.chroma import get_chroma
from realtime_ai_character.llm.base import AsyncCallbackAudioHandler, AsyncCallbackTextHandler, LLM
from realtime_ai_character.logger import get_logger
from realtime_ai_character.utils import Character

logger = get_logger(__name__)


class AnthropicLlm(LLM):
    def __init__(self, model):
        self.chat_anthropic = ChatAnthropic(
            model=model,
            temperature=0.5,
            streaming=True
        )
        self.db = get_chroma()

    async def achat(self,
                    history: List[BaseMessage],
                    user_input: str,
                    user_input_template: str,
                    callback: AsyncCallbackTextHandler,
                    audioCallback: AsyncCallbackAudioHandler,
                    character: Character) -> str:
        # 1. Generate context
        context = self._generate_context(user_input, character)

        # 2. Add user input to history
        history.append(HumanMessage(content=user_input_template.format(
            context=context, query=user_input)))

        # 3. Generate response
        response = await self.chat_anthropic.agenerate(
            [history], callbacks=[callback, audioCallback, StreamingStdOutCallbackHandler()])
        logger.info(f'Response: {response}')
        return response.generations[0][0].text

    def _generate_context(self, query, character: Character) -> str:
        docs = self.db.similarity_search(query)
        docs = [d for d in docs if d.metadata['character_name'] == character.name]
        logger.info(f'Found {len(docs)} documents')

        context = '\n'.join([d.page_content for d in docs])
        return context