File size: 3,494 Bytes
06e0fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import gradio as gr
import re
import cv2
from PIL import ImageDraw, Image

from transformers import AutoProcessor, PaliGemmaForConditionalGeneration

mix_model_id = "google/paligemma-3b-mix-224"
mix_model = PaliGemmaForConditionalGeneration.from_pretrained(mix_model_id)
mix_processor = AutoProcessor.from_pretrained(mix_model_id)

# Helper function to parse multiple <loc> tags and return a list of coordinate sets and labels
def parse_multiple_locations(decoded_output):
    # Regex pattern to match four <locxxxx> tags and the label at the end (e.g., 'cat')
    loc_pattern = r"<loc(\d{4})><loc(\d{4})><loc(\d{4})><loc(\d{4})>\s+(\w+)"

    matches = re.findall(loc_pattern, decoded_output)
    coords_and_labels = []

    for match in matches:
        # Extract the coordinates and label
        y1 = int(match[0]) / 1000
        x1 = int(match[1]) / 1000
        y2 = int(match[2]) / 1000
        x2 = int(match[3]) / 1000
        label = match[4]

        coords_and_labels.append({
            'label': label,
            'bbox': [y1, x1, y2, x2]
        })

    return coords_and_labels

# Helper function to draw bounding boxes and labels for all objects on the image
def draw_multiple_bounding_boxes(image, coords_and_labels):
    draw = ImageDraw.Draw(image)
    width, height = image.size

    for obj in coords_and_labels:
        # Extract the bounding box coordinates
        y1, x1, y2, x2 = obj['bbox'][0] * height, obj['bbox'][1] * width, obj['bbox'][2] * height, obj['bbox'][3] * width

        # Draw bounding box and label
        draw.rectangle([x1, y1, x2, y2], outline="red", width=3)
        draw.text((x1, y1), obj['label'], fill="red")

    return image

# Define inference function
def process_image(image, prompt):
    # Process the image and prompt using the processor
    inputs = mix_processor(image.convert("RGB"), prompt, return_tensors="pt")

    try:
        # Generate output from the model
        output = mix_model.generate(**inputs, max_new_tokens=100)

        # Decode the output from the model
        decoded_output = mix_processor.decode(output[0], skip_special_tokens=True)

        # Extract bounding box coordinates and labels
        coords_and_labels = parse_multiple_locations(decoded_output)

        if coords_and_labels:
            # Draw bounding boxes and labels on the image
            image_with_boxes = draw_multiple_bounding_boxes(image, coords_and_labels)

            # Prepare the coordinates and labels for the UI
            labels_and_coords = "\n".join([f"Label: {obj['label']}, Coordinates: {obj['bbox']}" for obj in coords_and_labels])

            # Return the modified image and the list of coordinates+labels
            return image_with_boxes, labels_and_coords
        else:
            return "No bounding boxes detected."

    except IndexError as e:
        print(f"IndexError: {e}")
        return "An error occurred during processing."

# Define the Gradio interface
inputs = [
    gr.Image(type="pil"),
    gr.Textbox(label="Prompt", placeholder="Enter your question")
]
outputs = [
    gr.Image(label="Output Image with Bounding Boxes"),
    gr.Textbox(label="Bounding Box Coordinates and Labels")
]

# Create the Gradio app
demo = gr.Interface(fn=process_image, inputs=inputs, outputs=outputs, title="Object Detection with Mix PaliGemma Model",
                    description="Upload an image and get object detections with bounding boxes and labels.")

# Launch the app
demo.launch(debug=True)