pyschopoodle's picture
Rename main.py to app.py
95c207c verified
import os
import streamlit as st
import pickle
import time
import langchain
from langchain import OpenAI
from langchain.chains import RetrievalQAWithSourcesChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import UnstructuredURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from dotenv import load_dotenv
load_dotenv()
# print(os.getenv("OPENAI_API_KEY"))
st.title("News Research TOOL")
st.sidebar.title("News Article URLs")
urls = []
for i in range(3):
url = st.sidebar.text_input(f"URL {i+1}")
urls.append(url)
main_placefolder = st.empty()
llm = OpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"),temperature=0.9,max_tokens=500)
process_url_clicked = st.sidebar.button("Process URLs")
if process_url_clicked:
loader = UnstructuredURLLoader(urls=urls)
main_placefolder.text("Data loading....Started...βœ…βœ…βœ…βœ…βœ…")
data = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
separators=['\n\n','\n','.',','],
chunk_size=1000
)
main_placefolder.text("Text Splitting....Started...βœ…βœ…βœ…βœ…βœ…")
docs = text_splitter.split_documents(data)
#embbedings
embeddings = OpenAIEmbeddings()
vectorstore_openai = FAISS.from_documents(docs,embedding=embeddings)
main_placefolder.text("Embbeding Vectors....Started...βœ…βœ…βœ…βœ…βœ…")
time.sleep(2)
vectorstore_openai.save_local("vectorindex_openai")
query = main_placefolder.text_input("Question: ")
if query:
if os.path.exists('vectorindex_openai'):
embeddings = OpenAIEmbeddings()
vectorindex = FAISS.load_local('vectorindex_openai', embeddings=embeddings,allow_dangerous_deserialization=True)
chain = RetrievalQAWithSourcesChain.from_llm(llm=llm,retriever=vectorindex.as_retriever())
result = chain({"question": query},return_only_outputs=True)
st.header("Answer")
st.write(result['answer'])
#Display Source if available
sources = result.get("sources","")
if sources:
st.subheader("Sources:")
source_list = sources.split("\n")
for source in source_list:
st.write(source)