File size: 8,598 Bytes
caa89c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# --------------------------------------------------------
# Semantic-SAM: Segment and Recognize Anything at Any Granularity
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Hao Zhang ([email protected])
# --------------------------------------------------------

import torch
import torch.nn.functional as F
import numpy as np
from torchvision import transforms
from task_adapter.utils.visualizer import Visualizer
from typing import Tuple
from PIL import Image
from detectron2.data import MetadataCatalog
from kornia.contrib import distance_transform
import matplotlib.pyplot as plt
import cv2
import io
metadata = MetadataCatalog.get('coco_2017_train_panoptic')

from segment_anything import SamAutomaticMaskGenerator
from segment_anything.utils.amg import (
    MaskData,
    area_from_rle,
    batch_iterator,
    batched_mask_to_box,
    box_xyxy_to_xywh,
    build_all_layer_point_grids,
    calculate_stability_score,
    coco_encode_rle,
    generate_crop_boxes,
    is_box_near_crop_edge,
    mask_to_rle_pytorch,
    remove_small_regions,
    rle_to_mask,
    uncrop_boxes_xyxy,
    uncrop_masks,
    uncrop_points,
)

def sam_interactive_mask(mask_generator, points, in_points, in_labels, mask_input):
    masks, iou_preds, _ = mask_generator.predictor.predict_torch(
            in_points,
            in_labels,
            mask_input=mask_input,
            multimask_output=True,
            return_logits=True,
    )
    nm,_,h,w = masks.shape

    # Serialize predictions and store in MaskData
    data = MaskData(
            masks=masks.flatten(0, 1),
            iou_preds=iou_preds.flatten(0, 1),
            points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
    )
    del masks

    # Calculate stability score
    data["stability_score"] = calculate_stability_score(
            data["masks"], mask_generator.predictor.model.mask_threshold, mask_generator.stability_score_offset
    )

    masks = data["masks"].reshape(nm, -1, h, w)
    scores = (data['iou_preds'] + data['stability_score']).reshape(nm, -1)

    index = torch.stack([torch.arange(nm).cuda(), scores.argmax(dim=1)]).tolist()
    return masks[index]

def inference_sam_m2m_interactive(model, image, spatial_masks, text_size, label_mode='1', alpha=0.1, anno_mode=['Mask']):
    t = []
    t.append(transforms.Resize(int(text_size), interpolation=Image.BICUBIC))
    transform1 = transforms.Compose(t)
    image_ori = transform1(image)

    image_ori = np.asarray(image_ori)
    images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()

    orig_size = images.shape[-2:]
    orig_h, orig_w = orig_size
    crop_box = [0,0,orig_w,orig_h]

    spatial_masks = spatial_masks[:, None].float().cuda()
    spatial_masks = F.interpolate(spatial_masks, size=(orig_h, orig_w), mode='bicubic', align_corners=False) > 0

    # generate single center point
    # n,_,h,w = spatial_masks.shape
    # mask_dt = (distance_transform((~F.pad(spatial_masks, pad=(1, 1, 1, 1), mode='constant', value=0)).float())[:,:,1:-1,1:-1]).reshape(n,-1)
    # max_xy_idx = torch.stack([torch.arange(n), mask_dt.max(dim=-1)[1].cpu()]).tolist()
    # next_mask = torch.zeros(spatial_masks.shape, device=torch.cuda.current_device()).bool()
    # next_mask = next_mask.view(n,-1)
    # next_mask[max_xy_idx] = True
    # next_mask = next_mask.reshape((n,1,h,w))
    # points = next_mask.nonzero()[:,2:].flip(dims=[1]).cpu().numpy()

    # stack sampled points
    acc_points = []
    for i in range(len(spatial_masks)):
        points = spatial_masks[i:i+1].nonzero()[:,2:].flip(dims=[1]).cpu().numpy()
        rand_ids = np.random.choice(points.shape[0], size=40, replace=True)
        points = points[rand_ids]
        acc_points.append(points)
    _np = len(acc_points)
    points = np.concatenate(acc_points)

    mask_generator = SamAutomaticMaskGenerator(model)
    mask_generator.predictor.set_image(image_ori)
    im_size = image_ori.shape[:-1]

    transformed_points = mask_generator.predictor.transform.apply_coords(points, im_size)
    in_points = torch.as_tensor(transformed_points, device=mask_generator.predictor.device).reshape(_np,-1,2).transpose(0,1)
    in_labels = torch.ones((in_points.shape[0], _np), dtype=torch.int, device=mask_generator.predictor.device)

    masks = sam_interactive_mask(mask_generator, points, in_points.transpose(0,1), in_labels.transpose(0,1), None)

    masks = masks > 0.0
    iou_preds = torch.ones(masks.shape[0], dtype=torch.float32)
    points = torch.zeros((masks.shape[0], 2), dtype=torch.float32)

    mask_data = MaskData(
        masks=masks,
        iou_preds=iou_preds,
        points=points,
    )

    mask_data["stability_score"] = torch.ones(masks.shape[0], dtype=torch.float32)
    del masks

    mask_data["boxes"] = batched_mask_to_box(mask_data["masks"])
    mask_data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(mask_data["boxes"]))])

    # Compress to RLE
    mask_data["masks"] = uncrop_masks(mask_data["masks"], crop_box, orig_h, orig_w)
    mask_data["rles"] = mask_to_rle_pytorch(mask_data["masks"])
    del mask_data["masks"]
    mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]

    # Write mask records
    outputs = []
    for idx in range(len(mask_data["segmentations"])):
        ann = {
            "segmentation": mask_data["segmentations"][idx],
            "area": area_from_rle(mask_data["rles"][idx]),
            "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
            "predicted_iou": mask_data["iou_preds"][idx].item(),
            "point_coords": [mask_data["points"][idx].tolist()],
            "stability_score": mask_data["stability_score"][idx].item(),
            "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
        }
        outputs.append(ann)

    from task_adapter.utils.visualizer import Visualizer
    visual = Visualizer(image_ori, metadata=metadata)
    sorted_anns = sorted(outputs, key=(lambda x: x['area']), reverse=True)
    label = 1
    # for ann in sorted_anns:
    #     mask = ann['segmentation']
    #     demo = visual.draw_binary_mask_with_number(mask, text=str(label), label_mode=label_mode, alpha=alpha, anno_mode=anno_mode)
    #     label += 1
    # im = demo.get_image()

    mask_map = np.zeros(image_ori.shape, dtype=np.uint8)    
    for i, ann in enumerate(sorted_anns):
        mask = ann['segmentation']
        color_mask = np.random.random((1, 3)).tolist()[0]
        # color_mask = [int(c*255) for c in color_mask]
        demo = visual.draw_binary_mask_with_number(mask, text=str(label), label_mode=label_mode, alpha=alpha, anno_mode=anno_mode)
        # assign the mask to the mask_map
        mask_map[mask == 1] = label
        label += 1
    im = demo.get_image()    
    # fig=plt.figure(figsize=(10, 10))
    # plt.imshow(image_ori)
    # show_anns(outputs)
    # fig.canvas.draw()
    # im=Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
    return im, sorted_anns


def remove_small_regions(
    mask: np.ndarray, area_thresh: float, mode: str
) -> Tuple[np.ndarray, bool]:
    """
    Removes small disconnected regions and holes in a mask. Returns the
    mask and an indicator of if the mask has been modified.
    """
    import cv2  # type: ignore

    assert mode in ["holes", "islands"]
    correct_holes = mode == "holes"
    working_mask = (correct_holes ^ mask).astype(np.uint8)
    n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
    sizes = stats[:, -1][1:]  # Row 0 is background label
    small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
    if len(small_regions) == 0:
        return mask, False
    fill_labels = [0] + small_regions
    if not correct_holes:
        fill_labels = [i for i in range(n_labels) if i not in fill_labels]
        # If every region is below threshold, keep largest
        if len(fill_labels) == 0:
            fill_labels = [int(np.argmax(sizes)) + 1]
    mask = np.isin(regions, fill_labels)
    return mask, True

def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    ax = plt.gca()
    ax.set_autoscale_on(False)
    polygons = []
    color = []
    for ann in sorted_anns:
        m = ann['segmentation']
        img = np.ones((m.shape[0], m.shape[1], 3))
        color_mask = np.random.random((1, 3)).tolist()[0]
        for i in range(3):
            img[:,:,i] = color_mask[i]
        ax.imshow(np.dstack((img, m*0.35)))