File size: 5,526 Bytes
caa89c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# --------------------------------------------------------
# Semantic-SAM: Segment and Recognize Anything at Any Granularity
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Hao Zhang ([email protected])
# --------------------------------------------------------

import torch
import numpy as np
from torchvision import transforms
from task_adapter.utils.visualizer import Visualizer
from typing import Tuple
from PIL import Image
from detectron2.data import MetadataCatalog
from detectron2.structures import BitMasks
from semantic_sam.utils import box_ops

metadata = MetadataCatalog.get('coco_2017_train_panoptic')

def interactive_infer_image_box(model, image,all_classes,all_parts, thresh,text_size,hole_scale,island_scale,semantic, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
    t = []
    t.append(transforms.Resize(int(text_size), interpolation=Image.BICUBIC))
    transform1 = transforms.Compose(t)
    image_ori = transform1(image['image'])
    mask_ori = transform1(image['mask'])
    width = image_ori.size[0]
    height = image_ori.size[1]
    image_ori = np.asarray(image_ori)
    images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
    all_classes, all_parts=all_classes.strip().strip("\"[]").split(':'),all_parts.strip().strip("\"[]").split(':')


    data = {"image": images, "height": height, "width": width}

    mask_ori = np.asarray(mask_ori)[:,:,0:1].copy()
    mask_ori = torch.from_numpy(mask_ori).permute(2,0,1)[0]
    flaten_mask = mask_ori.unsqueeze(0)
    # import ipdb; ipdb.set_trace()
    points=mask_ori.nonzero().float().to(images.device)
    if len(points)==0:
        point_=point=points.new_tensor([[0.5,0.5,0.5,0.5]])
    else:
        mean_point=points.mean(0)[None]
        box_xyxy = BitMasks(flaten_mask > 0).get_bounding_boxes().tensor
        h = mask_ori.shape[0]
        w = mask_ori.shape[1]
        box_xywh = (box_ops.box_xyxy_to_cxcywh(box_xyxy) / torch.as_tensor([w, h, w, h])).cuda()

        # point_=points.mean(0)[None]
        # point=point_.clone()
        # point[0, 0] = point_[0, 0] / mask_ori.shape[0]
        # point[0, 1] = point_[0, 1] / mask_ori.shape[1]
        # point = point[:, [1, 0]]
        point=box_xywh
    data['targets'] = [dict()]
    data['targets'][0]['points']=point
    data['targets'][0]['pb']=point.new_tensor([1.])


    batch_inputs = [data]
    masks,ious = model.model.evaluate_demo(batch_inputs,all_classes,all_parts, task='demo_box')

    pred_masks_poses = masks
    reses=[]
    ious=ious[0,0]
    ids=torch.argsort(ious,descending=True)

    text_res=''
    try:
        thresh=float(thresh)
    except Exception:
        thresh=0.0
    mask_ls=[]
    ious_res=[]
    areas=[]
    for i,(pred_masks_pos,iou) in enumerate(zip(pred_masks_poses[ids],ious[ids])):
        iou=round(float(iou),2)
        texts=f'{iou}'
        mask=(pred_masks_pos>0.0).cpu().numpy()
        area=mask.sum()
        conti=False
        if iou<thresh:
            conti=True
        for m in mask_ls:
            if np.logical_and(mask,m).sum()/np.logical_or(mask,m).sum()>0.95:
                conti=True
                break
        if i == len(pred_masks_poses[ids])-1 and mask_ls==[]:
            conti=False
        if conti:
            continue
        ious_res.append(iou)
        mask_ls.append(mask)
        areas.append(area)
        mask,_=remove_small_regions(mask,int(hole_scale),mode="holes")
        mask,_=remove_small_regions(mask,int(island_scale),mode="islands")
        mask=(mask).astype(np.float)
        out_txt = texts
        visual = Visualizer(image_ori, metadata=metadata)
        color=[0.,0.,1.0]
        demo = visual.draw_binary_mask(mask, color=color, text=texts)
        demo = visual.draw_box(box_xyxy[0])
        res = demo.get_image()
        # point_x0=max(0,int(point_[0, 1])-3)
        # point_x1=min(mask_ori.shape[1],int(point_[0, 1])+3)
        # point_y0 = max(0, int(point_[0, 0]) - 3)
        # point_y1 = min(mask_ori.shape[0], int(point_[0, 0]) + 3)
        # res[point_y0:point_y1,point_x0:point_x1,0]=255
        # res[point_y0:point_y1,point_x0:point_x1,1]=0
        # res[point_y0:point_y1,point_x0:point_x1,2]=0
        reses.append(Image.fromarray(res))
        text_res=text_res+';'+out_txt
    ids=list(torch.argsort(torch.tensor(areas),descending=False))
    ids = [int(i) for i in ids]

    torch.cuda.empty_cache()

    return reses,[reses[i] for i in ids]

def remove_small_regions(
    mask: np.ndarray, area_thresh: float, mode: str
) -> Tuple[np.ndarray, bool]:
    """
    Removes small disconnected regions and holes in a mask. Returns the
    mask and an indicator of if the mask has been modified.
    """
    import cv2  # type: ignore

    assert mode in ["holes", "islands"]
    correct_holes = mode == "holes"
    working_mask = (correct_holes ^ mask).astype(np.uint8)
    n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
    sizes = stats[:, -1][1:]  # Row 0 is background label
    small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
    if len(small_regions) == 0:
        return mask, False
    fill_labels = [0] + small_regions
    if not correct_holes:
        fill_labels = [i for i in range(n_labels) if i not in fill_labels]
        # If every region is below threshold, keep largest
        if len(fill_labels) == 0:
            fill_labels = [int(np.argmax(sizes)) + 1]
    mask = np.isin(regions, fill_labels)
    return mask, True