Spaces:
Runtime error
Runtime error
File size: 8,724 Bytes
8e0145b 6c016cc 8e0145b 6c016cc 8e0145b 6c016cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
title: SoM_v0
app_file: demo_som.py
sdk: gradio
sdk_version: 4.32.1
---
# <img src="assets/som_logo.png" alt="Logo" width="40" height="40" align="left"> Set-of-Mark Visual Prompting for GPT-4V
:grapes: \[[Read our arXiv Paper](https://arxiv.org/pdf/2310.11441.pdf)\] :apple: \[[Project Page](https://som-gpt4v.github.io/)\]
[Jianwei Yang](https://jwyang.github.io/)\*β, [Hao Zhang](https://haozhang534.github.io/)\*, [Feng Li](https://fengli-ust.github.io/)\*, [Xueyan Zou](https://maureenzou.github.io/)\*, [Chunyuan Li](https://chunyuan.li/), [Jianfeng Gao](https://www.microsoft.com/en-us/research/people/jfgao/)
\* Core Contributors β Project Lead
### Introduction
We present **S**et-**o**f-**M**ark (SoM) prompting, simply overlaying a number of spatial and speakable marks on the images, to unleash the visual grounding abilities in the strongest LMM -- GPT-4V. **Let's using visual prompting for vision**!

### GPT-4V + SoM Demo
https://github.com/microsoft/SoM/assets/3894247/8f827871-7ebd-4a5e-bef5-861516c4427b
### π₯ News
* [04/25] We release SoM-LLaVA, with a new dataset to empower open-source MLLMs with SoM Prompting. Check it out! [SoM-LLaVA](https://github.com/zzxslp/SoM-LLaVA)
* [11/21] Thanks to Roboflow and @SkalskiP, a [huggingface demo](https://huggingface.co/spaces/Roboflow/SoM) for SoM + GPT-4V is online! Try it out!
* [11/07] We released the vision benchmark we used to evaluate GPT-4V with SoM prompting! Check out the [benchmark page](https://github.com/microsoft/SoM/tree/main/benchmark)!
* [11/07] Now that GPT-4V API has been released, we are releasing a demo integrating SoM into GPT-4V!
```bash
export OPENAI_API_KEY=YOUR_API_KEY
python demo_gpt4v_som.py
```
* [10/23] We released the SoM toolbox code for generating set-of-mark prompts for GPT-4V. Try it out!
### π Fascinating Applications
Fascinating applications of SoM in GPT-4V:
* [11/13/2023] [Smartphone GUI Navigation boosted by Set-of-Mark Prompting](https://github.com/zzxslp/MM-Navigator)
* [11/05/2023] [Zero-shot Anomaly Detection with GPT-4V and SoM prompting](https://github.com/zhangzjn/GPT-4V-AD)
* [10/21/2023] [Web UI Navigation Agent inspired by Set-of-Mark Prompting](https://github.com/ddupont808/GPT-4V-Act)
* [10/20/2023] [Set-of-Mark Prompting Reimplementation by @SkalskiP from Roboflow](https://github.com/SkalskiP/SoM.git)
### π Related Works
Our method compiles the following models to generate the set of marks:
- [Mask DINO](https://github.com/IDEA-Research/MaskDINO): State-of-the-art closed-set image segmentation model
- [OpenSeeD](https://github.com/IDEA-Research/OpenSeeD): State-of-the-art open-vocabulary image segmentation model
- [GroundingDINO](https://github.com/IDEA-Research/GroundingDINO): State-of-the-art open-vocabulary object detection model
- [SEEM](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once): Versatile, promptable, interactive and semantic-aware segmentation model
- [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM): Segment and recognize anything at any granularity
- [Segment Anything](https://github.com/facebookresearch/segment-anything): Segment anything
We are standing on the shoulder of the giant GPT-4V ([playground](https://chat.openai.com/))!
### :rocket: Quick Start
* Install segmentation packages
```bash
# install SEEM
pip install git+https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once.git@package
# install SAM
pip install git+https://github.com/facebookresearch/segment-anything.git
# install Semantic-SAM
pip install git+https://github.com/UX-Decoder/Semantic-SAM.git@package
# install Deformable Convolution for Semantic-SAM
cd ops && sh make.sh && cd ..
# common error fix:
python -m pip install 'git+https://github.com/MaureenZOU/detectron2-xyz.git'
```
* Download the pretrained models
```bash
sh download_ckpt.sh
```
* Run the demo
```bash
python demo_som.py
```
And you will see this interface:

## Deploy to AWS
To deploy SoM to EC2 on AWS via Github Actions:
1. Fork this repository and clone your fork to your local machine.
2. Follow the instructions at the top of `deploy.py`.
### :point_right: Comparing standard GPT-4V and its combination with SoM Prompting

### :round_pushpin: SoM Toolbox for image partition

Users can select which granularity of masks to generate, and which mode to use between automatic (top) and interactive (bottom). A higher alpha blending value (0.4) is used for better visualization.
### :unicorn: Interleaved Prompt
SoM enables interleaved prompts which include textual and visual content. The visual content can be represented using the region indices.
<img width="975" alt="Screenshot 2023-10-18 at 10 06 18" src="https://github.com/microsoft/SoM/assets/34880758/859edfda-ab04-450c-bd28-93762460ac1d">
### :medal_military: Mark types used in SoM

### :volcano: Evaluation tasks examples
<img width="946" alt="Screenshot 2023-10-18 at 10 12 18" src="https://github.com/microsoft/SoM/assets/34880758/f5e0c0b0-58de-4b60-bf01-4906dbcb229e">
## Use case
### :tulip: Grounded Reasoning and Cross-Image Reference
<img width="972" alt="Screenshot 2023-10-18 at 10 10 41" src="https://github.com/microsoft/SoM/assets/34880758/033cd16c-876c-4c03-961e-590a4189bc9e">
In comparison to GPT-4V without SoM, adding marks enables GPT-4V to ground the
reasoning on detailed contents of the image (Left). Clear object cross-image references are observed
on the right.
17
### :camping: Problem Solving
<img width="972" alt="Screenshot 2023-10-18 at 10 18 03" src="https://github.com/microsoft/SoM/assets/34880758/8b112126-d164-47d7-b18c-b4b51b903d57">
Case study on solving CAPTCHA. GPT-4V gives the wrong answer with a wrong number
of squares while finding the correct squares with corresponding marks after SoM prompting.
### :mountain_snow: Knowledge Sharing
<img width="733" alt="Screenshot 2023-10-18 at 10 18 44" src="https://github.com/microsoft/SoM/assets/34880758/dc753c3f-ada8-47a4-83f1-1576bcfb146a">
Case study on an image of dish for GPT-4V. GPT-4V does not produce a grounded answer
with the original image. Based on SoM prompting, GPT-4V not only speaks out the ingredients but
also corresponds them to the regions.
### :mosque: Personalized Suggestion
<img width="733" alt="Screenshot 2023-10-18 at 10 19 12" src="https://github.com/microsoft/SoM/assets/34880758/88188c90-84f2-49c6-812e-44770b0c2ca5">
SoM-pormpted GPT-4V gives very precise suggestions while the original one fails, even
with hallucinated foods, e.g., soft drinks
### :blossom: Tool Usage Instruction
<img width="734" alt="Screenshot 2023-10-18 at 10 19 39" src="https://github.com/microsoft/SoM/assets/34880758/9b35b143-96af-41bd-ad83-9c1f1e0f322f">
Likewise, GPT4-V with SoM can help to provide thorough tool usage instruction
, teaching
users the function of each button on a controller. Note that this image is not fully labeled, while
GPT-4V can also provide information about the non-labeled buttons.
### :sunflower: 2D Game Planning
<img width="730" alt="Screenshot 2023-10-18 at 10 20 03" src="https://github.com/microsoft/SoM/assets/34880758/0bc86109-5512-4dee-aac9-bab0ef96ed4c">
GPT-4V with SoM gives a reasonable suggestion on how to achieve a goal in a gaming
scenario.
### :mosque: Simulated Navigation
<img width="729" alt="Screenshot 2023-10-18 at 10 21 24" src="https://github.com/microsoft/SoM/assets/34880758/7f139250-5350-4790-a35c-444ec2ec883b">
### :deciduous_tree: Results
We conduct experiments on various vision tasks to verify the effectiveness of our SoM. Results show that GPT4V+SoM outperforms specialists on most vision tasks and is comparable to MaskDINO on COCO panoptic segmentation.

## :black_nib: Citation
If you find our work helpful for your research, please consider citing the following BibTeX entry.
```bibtex
@article{yang2023setofmark,
title={Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V},
author={Jianwei Yang and Hao Zhang and Feng Li and Xueyan Zou and Chunyuan Li and Jianfeng Gao},
journal={arXiv preprint arXiv:2310.11441},
year={2023},
}
```
|