Spaces:
Runtime error
Runtime error
/*! | |
************************************************************************** | |
* Deformable DETR | |
* Copyright (c) 2020 SenseTime. All Rights Reserved. | |
* Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
************************************************************************** | |
* Modified from DCN (https://github.com/msracver/Deformable-ConvNets) | |
* Copyright (c) 2018 Microsoft | |
************************************************************************** | |
*/ | |
/*! | |
* Copyright (c) Facebook, Inc. and its affiliates. | |
* Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR | |
*/ | |
#include <cstdio> | |
#include <algorithm> | |
#include <cstring> | |
#include <ATen/ATen.h> | |
#include <ATen/cuda/CUDAContext.h> | |
#include <THC/THCAtomics.cuh> | |
#define CUDA_KERNEL_LOOP(i, n) \ | |
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \ | |
i < (n); \ | |
i += blockDim.x * gridDim.x) | |
const int CUDA_NUM_THREADS = 1024; | |
inline int GET_BLOCKS(const int N, const int num_threads) | |
{ | |
return (N + num_threads - 1) / num_threads; | |
} | |
template <typename scalar_t> | |
__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data, | |
const int &height, const int &width, const int &nheads, const int &channels, | |
const scalar_t &h, const scalar_t &w, const int &m, const int &c) | |
{ | |
const int h_low = floor(h); | |
const int w_low = floor(w); | |
const int h_high = h_low + 1; | |
const int w_high = w_low + 1; | |
const scalar_t lh = h - h_low; | |
const scalar_t lw = w - w_low; | |
const scalar_t hh = 1 - lh, hw = 1 - lw; | |
const int w_stride = nheads * channels; | |
const int h_stride = width * w_stride; | |
const int h_low_ptr_offset = h_low * h_stride; | |
const int h_high_ptr_offset = h_low_ptr_offset + h_stride; | |
const int w_low_ptr_offset = w_low * w_stride; | |
const int w_high_ptr_offset = w_low_ptr_offset + w_stride; | |
const int base_ptr = m * channels + c; | |
scalar_t v1 = 0; | |
if (h_low >= 0 && w_low >= 0) | |
{ | |
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; | |
v1 = bottom_data[ptr1]; | |
} | |
scalar_t v2 = 0; | |
if (h_low >= 0 && w_high <= width - 1) | |
{ | |
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; | |
v2 = bottom_data[ptr2]; | |
} | |
scalar_t v3 = 0; | |
if (h_high <= height - 1 && w_low >= 0) | |
{ | |
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; | |
v3 = bottom_data[ptr3]; | |
} | |
scalar_t v4 = 0; | |
if (h_high <= height - 1 && w_high <= width - 1) | |
{ | |
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; | |
v4 = bottom_data[ptr4]; | |
} | |
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; | |
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
return val; | |
} | |
template <typename scalar_t> | |
__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data, | |
const int &height, const int &width, const int &nheads, const int &channels, | |
const scalar_t &h, const scalar_t &w, const int &m, const int &c, | |
const scalar_t &top_grad, | |
const scalar_t &attn_weight, | |
scalar_t* &grad_value, | |
scalar_t* grad_sampling_loc, | |
scalar_t* grad_attn_weight) | |
{ | |
const int h_low = floor(h); | |
const int w_low = floor(w); | |
const int h_high = h_low + 1; | |
const int w_high = w_low + 1; | |
const scalar_t lh = h - h_low; | |
const scalar_t lw = w - w_low; | |
const scalar_t hh = 1 - lh, hw = 1 - lw; | |
const int w_stride = nheads * channels; | |
const int h_stride = width * w_stride; | |
const int h_low_ptr_offset = h_low * h_stride; | |
const int h_high_ptr_offset = h_low_ptr_offset + h_stride; | |
const int w_low_ptr_offset = w_low * w_stride; | |
const int w_high_ptr_offset = w_low_ptr_offset + w_stride; | |
const int base_ptr = m * channels + c; | |
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; | |
const scalar_t top_grad_value = top_grad * attn_weight; | |
scalar_t grad_h_weight = 0, grad_w_weight = 0; | |
scalar_t v1 = 0; | |
if (h_low >= 0 && w_low >= 0) | |
{ | |
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; | |
v1 = bottom_data[ptr1]; | |
grad_h_weight -= hw * v1; | |
grad_w_weight -= hh * v1; | |
atomicAdd(grad_value+ptr1, w1*top_grad_value); | |
} | |
scalar_t v2 = 0; | |
if (h_low >= 0 && w_high <= width - 1) | |
{ | |
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; | |
v2 = bottom_data[ptr2]; | |
grad_h_weight -= lw * v2; | |
grad_w_weight += hh * v2; | |
atomicAdd(grad_value+ptr2, w2*top_grad_value); | |
} | |
scalar_t v3 = 0; | |
if (h_high <= height - 1 && w_low >= 0) | |
{ | |
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; | |
v3 = bottom_data[ptr3]; | |
grad_h_weight += hw * v3; | |
grad_w_weight -= lh * v3; | |
atomicAdd(grad_value+ptr3, w3*top_grad_value); | |
} | |
scalar_t v4 = 0; | |
if (h_high <= height - 1 && w_high <= width - 1) | |
{ | |
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; | |
v4 = bottom_data[ptr4]; | |
grad_h_weight += lw * v4; | |
grad_w_weight += lh * v4; | |
atomicAdd(grad_value+ptr4, w4*top_grad_value); | |
} | |
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
*grad_attn_weight = top_grad * val; | |
*grad_sampling_loc = width * grad_w_weight * top_grad_value; | |
*(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value; | |
} | |
template <typename scalar_t> | |
__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data, | |
const int &height, const int &width, const int &nheads, const int &channels, | |
const scalar_t &h, const scalar_t &w, const int &m, const int &c, | |
const scalar_t &top_grad, | |
const scalar_t &attn_weight, | |
scalar_t* &grad_value, | |
scalar_t* grad_sampling_loc, | |
scalar_t* grad_attn_weight) | |
{ | |
const int h_low = floor(h); | |
const int w_low = floor(w); | |
const int h_high = h_low + 1; | |
const int w_high = w_low + 1; | |
const scalar_t lh = h - h_low; | |
const scalar_t lw = w - w_low; | |
const scalar_t hh = 1 - lh, hw = 1 - lw; | |
const int w_stride = nheads * channels; | |
const int h_stride = width * w_stride; | |
const int h_low_ptr_offset = h_low * h_stride; | |
const int h_high_ptr_offset = h_low_ptr_offset + h_stride; | |
const int w_low_ptr_offset = w_low * w_stride; | |
const int w_high_ptr_offset = w_low_ptr_offset + w_stride; | |
const int base_ptr = m * channels + c; | |
const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw; | |
const scalar_t top_grad_value = top_grad * attn_weight; | |
scalar_t grad_h_weight = 0, grad_w_weight = 0; | |
scalar_t v1 = 0; | |
if (h_low >= 0 && w_low >= 0) | |
{ | |
const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr; | |
v1 = bottom_data[ptr1]; | |
grad_h_weight -= hw * v1; | |
grad_w_weight -= hh * v1; | |
atomicAdd(grad_value+ptr1, w1*top_grad_value); | |
} | |
scalar_t v2 = 0; | |
if (h_low >= 0 && w_high <= width - 1) | |
{ | |
const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr; | |
v2 = bottom_data[ptr2]; | |
grad_h_weight -= lw * v2; | |
grad_w_weight += hh * v2; | |
atomicAdd(grad_value+ptr2, w2*top_grad_value); | |
} | |
scalar_t v3 = 0; | |
if (h_high <= height - 1 && w_low >= 0) | |
{ | |
const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr; | |
v3 = bottom_data[ptr3]; | |
grad_h_weight += hw * v3; | |
grad_w_weight -= lh * v3; | |
atomicAdd(grad_value+ptr3, w3*top_grad_value); | |
} | |
scalar_t v4 = 0; | |
if (h_high <= height - 1 && w_high <= width - 1) | |
{ | |
const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr; | |
v4 = bottom_data[ptr4]; | |
grad_h_weight += lw * v4; | |
grad_w_weight += lh * v4; | |
atomicAdd(grad_value+ptr4, w4*top_grad_value); | |
} | |
const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
atomicAdd(grad_attn_weight, top_grad * val); | |
atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value); | |
atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value); | |
} | |
template <typename scalar_t> | |
__global__ void ms_deformable_im2col_gpu_kernel(const int n, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *data_col) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
scalar_t *data_col_ptr = data_col + index; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
scalar_t col = 0; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride); | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight; | |
} | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
} | |
} | |
*data_col_ptr = col; | |
} | |
} | |
template <typename scalar_t, unsigned int blockSize> | |
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n, | |
const scalar_t *grad_col, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *grad_value, | |
scalar_t *grad_sampling_loc, | |
scalar_t *grad_attn_weight) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; | |
__shared__ scalar_t cache_grad_attn_weight[blockSize]; | |
unsigned int tid = threadIdx.x; | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
const scalar_t top_grad = grad_col[index]; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int grad_sampling_ptr = data_weight_ptr; | |
grad_sampling_loc += grad_sampling_ptr << 1; | |
grad_attn_weight += grad_sampling_ptr; | |
const int grad_weight_stride = 1; | |
const int grad_loc_stride = 2; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; | |
const scalar_t *data_value_ptr = data_value + value_ptr_offset; | |
scalar_t *grad_value_ptr = grad_value + value_ptr_offset; | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; | |
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; | |
*(cache_grad_attn_weight+threadIdx.x)=0; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
ms_deform_attn_col2im_bilinear( | |
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, | |
top_grad, weight, grad_value_ptr, | |
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); | |
} | |
__syncthreads(); | |
if (tid == 0) | |
{ | |
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; | |
int sid=2; | |
for (unsigned int tid = 1; tid < blockSize; ++tid) | |
{ | |
_grad_w += cache_grad_sampling_loc[sid]; | |
_grad_h += cache_grad_sampling_loc[sid + 1]; | |
_grad_a += cache_grad_attn_weight[tid]; | |
sid += 2; | |
} | |
*grad_sampling_loc = _grad_w; | |
*(grad_sampling_loc + 1) = _grad_h; | |
*grad_attn_weight = _grad_a; | |
} | |
__syncthreads(); | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
grad_attn_weight += grad_weight_stride; | |
grad_sampling_loc += grad_loc_stride; | |
} | |
} | |
} | |
} | |
template <typename scalar_t, unsigned int blockSize> | |
__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n, | |
const scalar_t *grad_col, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *grad_value, | |
scalar_t *grad_sampling_loc, | |
scalar_t *grad_attn_weight) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
__shared__ scalar_t cache_grad_sampling_loc[blockSize * 2]; | |
__shared__ scalar_t cache_grad_attn_weight[blockSize]; | |
unsigned int tid = threadIdx.x; | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
const scalar_t top_grad = grad_col[index]; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int grad_sampling_ptr = data_weight_ptr; | |
grad_sampling_loc += grad_sampling_ptr << 1; | |
grad_attn_weight += grad_sampling_ptr; | |
const int grad_weight_stride = 1; | |
const int grad_loc_stride = 2; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; | |
const scalar_t *data_value_ptr = data_value + value_ptr_offset; | |
scalar_t *grad_value_ptr = grad_value + value_ptr_offset; | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; | |
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; | |
*(cache_grad_attn_weight+threadIdx.x)=0; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
ms_deform_attn_col2im_bilinear( | |
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, | |
top_grad, weight, grad_value_ptr, | |
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); | |
} | |
__syncthreads(); | |
for (unsigned int s=blockSize/2; s>0; s>>=1) | |
{ | |
if (tid < s) { | |
const unsigned int xid1 = tid << 1; | |
const unsigned int xid2 = (tid + s) << 1; | |
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; | |
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; | |
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; | |
} | |
__syncthreads(); | |
} | |
if (tid == 0) | |
{ | |
*grad_sampling_loc = cache_grad_sampling_loc[0]; | |
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; | |
*grad_attn_weight = cache_grad_attn_weight[0]; | |
} | |
__syncthreads(); | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
grad_attn_weight += grad_weight_stride; | |
grad_sampling_loc += grad_loc_stride; | |
} | |
} | |
} | |
} | |
template <typename scalar_t> | |
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n, | |
const scalar_t *grad_col, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *grad_value, | |
scalar_t *grad_sampling_loc, | |
scalar_t *grad_attn_weight) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
extern __shared__ int _s[]; | |
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; | |
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; | |
unsigned int tid = threadIdx.x; | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
const scalar_t top_grad = grad_col[index]; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int grad_sampling_ptr = data_weight_ptr; | |
grad_sampling_loc += grad_sampling_ptr << 1; | |
grad_attn_weight += grad_sampling_ptr; | |
const int grad_weight_stride = 1; | |
const int grad_loc_stride = 2; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; | |
const scalar_t *data_value_ptr = data_value + value_ptr_offset; | |
scalar_t *grad_value_ptr = grad_value + value_ptr_offset; | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; | |
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; | |
*(cache_grad_attn_weight+threadIdx.x)=0; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
ms_deform_attn_col2im_bilinear( | |
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, | |
top_grad, weight, grad_value_ptr, | |
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); | |
} | |
__syncthreads(); | |
if (tid == 0) | |
{ | |
scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0]; | |
int sid=2; | |
for (unsigned int tid = 1; tid < blockDim.x; ++tid) | |
{ | |
_grad_w += cache_grad_sampling_loc[sid]; | |
_grad_h += cache_grad_sampling_loc[sid + 1]; | |
_grad_a += cache_grad_attn_weight[tid]; | |
sid += 2; | |
} | |
*grad_sampling_loc = _grad_w; | |
*(grad_sampling_loc + 1) = _grad_h; | |
*grad_attn_weight = _grad_a; | |
} | |
__syncthreads(); | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
grad_attn_weight += grad_weight_stride; | |
grad_sampling_loc += grad_loc_stride; | |
} | |
} | |
} | |
} | |
template <typename scalar_t> | |
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n, | |
const scalar_t *grad_col, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *grad_value, | |
scalar_t *grad_sampling_loc, | |
scalar_t *grad_attn_weight) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
extern __shared__ int _s[]; | |
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; | |
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; | |
unsigned int tid = threadIdx.x; | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
const scalar_t top_grad = grad_col[index]; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int grad_sampling_ptr = data_weight_ptr; | |
grad_sampling_loc += grad_sampling_ptr << 1; | |
grad_attn_weight += grad_sampling_ptr; | |
const int grad_weight_stride = 1; | |
const int grad_loc_stride = 2; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; | |
const scalar_t *data_value_ptr = data_value + value_ptr_offset; | |
scalar_t *grad_value_ptr = grad_value + value_ptr_offset; | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; | |
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; | |
*(cache_grad_attn_weight+threadIdx.x)=0; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
ms_deform_attn_col2im_bilinear( | |
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, | |
top_grad, weight, grad_value_ptr, | |
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); | |
} | |
__syncthreads(); | |
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) | |
{ | |
if (tid < s) { | |
const unsigned int xid1 = tid << 1; | |
const unsigned int xid2 = (tid + s) << 1; | |
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; | |
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; | |
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; | |
if (tid + (s << 1) < spre) | |
{ | |
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; | |
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; | |
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; | |
} | |
} | |
__syncthreads(); | |
} | |
if (tid == 0) | |
{ | |
*grad_sampling_loc = cache_grad_sampling_loc[0]; | |
*(grad_sampling_loc + 1) = cache_grad_sampling_loc[1]; | |
*grad_attn_weight = cache_grad_attn_weight[0]; | |
} | |
__syncthreads(); | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
grad_attn_weight += grad_weight_stride; | |
grad_sampling_loc += grad_loc_stride; | |
} | |
} | |
} | |
} | |
template <typename scalar_t> | |
__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n, | |
const scalar_t *grad_col, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *grad_value, | |
scalar_t *grad_sampling_loc, | |
scalar_t *grad_attn_weight) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
extern __shared__ int _s[]; | |
scalar_t* cache_grad_sampling_loc = (scalar_t*)_s; | |
scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x; | |
unsigned int tid = threadIdx.x; | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
const scalar_t top_grad = grad_col[index]; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int grad_sampling_ptr = data_weight_ptr; | |
grad_sampling_loc += grad_sampling_ptr << 1; | |
grad_attn_weight += grad_sampling_ptr; | |
const int grad_weight_stride = 1; | |
const int grad_loc_stride = 2; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; | |
const scalar_t *data_value_ptr = data_value + value_ptr_offset; | |
scalar_t *grad_value_ptr = grad_value + value_ptr_offset; | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
*(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0; | |
*(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0; | |
*(cache_grad_attn_weight+threadIdx.x)=0; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
ms_deform_attn_col2im_bilinear( | |
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, | |
top_grad, weight, grad_value_ptr, | |
cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x); | |
} | |
__syncthreads(); | |
for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1) | |
{ | |
if (tid < s) { | |
const unsigned int xid1 = tid << 1; | |
const unsigned int xid2 = (tid + s) << 1; | |
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s]; | |
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2]; | |
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1]; | |
if (tid + (s << 1) < spre) | |
{ | |
cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)]; | |
cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)]; | |
cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)]; | |
} | |
} | |
__syncthreads(); | |
} | |
if (tid == 0) | |
{ | |
atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]); | |
atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]); | |
atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]); | |
} | |
__syncthreads(); | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
grad_attn_weight += grad_weight_stride; | |
grad_sampling_loc += grad_loc_stride; | |
} | |
} | |
} | |
} | |
template <typename scalar_t> | |
__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n, | |
const scalar_t *grad_col, | |
const scalar_t *data_value, | |
const int64_t *data_spatial_shapes, | |
const int64_t *data_level_start_index, | |
const scalar_t *data_sampling_loc, | |
const scalar_t *data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t *grad_value, | |
scalar_t *grad_sampling_loc, | |
scalar_t *grad_attn_weight) | |
{ | |
CUDA_KERNEL_LOOP(index, n) | |
{ | |
int _temp = index; | |
const int c_col = _temp % channels; | |
_temp /= channels; | |
const int sampling_index = _temp; | |
const int m_col = _temp % num_heads; | |
_temp /= num_heads; | |
const int q_col = _temp % num_query; | |
_temp /= num_query; | |
const int b_col = _temp; | |
const scalar_t top_grad = grad_col[index]; | |
int data_weight_ptr = sampling_index * num_levels * num_point; | |
int data_loc_w_ptr = data_weight_ptr << 1; | |
const int grad_sampling_ptr = data_weight_ptr; | |
grad_sampling_loc += grad_sampling_ptr << 1; | |
grad_attn_weight += grad_sampling_ptr; | |
const int grad_weight_stride = 1; | |
const int grad_loc_stride = 2; | |
const int qid_stride = num_heads * channels; | |
const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride; | |
for (int l_col=0; l_col < num_levels; ++l_col) | |
{ | |
const int level_start_id = data_level_start_index[l_col]; | |
const int spatial_h_ptr = l_col << 1; | |
const int spatial_h = data_spatial_shapes[spatial_h_ptr]; | |
const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1]; | |
const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride; | |
const scalar_t *data_value_ptr = data_value + value_ptr_offset; | |
scalar_t *grad_value_ptr = grad_value + value_ptr_offset; | |
for (int p_col=0; p_col < num_point; ++p_col) | |
{ | |
const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr]; | |
const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1]; | |
const scalar_t weight = data_attn_weight[data_weight_ptr]; | |
const scalar_t h_im = loc_h * spatial_h - 0.5; | |
const scalar_t w_im = loc_w * spatial_w - 0.5; | |
if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w) | |
{ | |
ms_deform_attn_col2im_bilinear_gm( | |
data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col, | |
top_grad, weight, grad_value_ptr, | |
grad_sampling_loc, grad_attn_weight); | |
} | |
data_weight_ptr += 1; | |
data_loc_w_ptr += 2; | |
grad_attn_weight += grad_weight_stride; | |
grad_sampling_loc += grad_loc_stride; | |
} | |
} | |
} | |
} | |
template <typename scalar_t> | |
void ms_deformable_im2col_cuda(cudaStream_t stream, | |
const scalar_t* data_value, | |
const int64_t* data_spatial_shapes, | |
const int64_t* data_level_start_index, | |
const scalar_t* data_sampling_loc, | |
const scalar_t* data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t* data_col) | |
{ | |
const int num_kernels = batch_size * num_query * num_heads * channels; | |
const int num_actual_kernels = batch_size * num_query * num_heads * channels; | |
const int num_threads = CUDA_NUM_THREADS; | |
ms_deformable_im2col_gpu_kernel<scalar_t> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight, | |
batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col); | |
cudaError_t err = cudaGetLastError(); | |
if (err != cudaSuccess) | |
{ | |
printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err)); | |
} | |
} | |
template <typename scalar_t> | |
void ms_deformable_col2im_cuda(cudaStream_t stream, | |
const scalar_t* grad_col, | |
const scalar_t* data_value, | |
const int64_t * data_spatial_shapes, | |
const int64_t * data_level_start_index, | |
const scalar_t * data_sampling_loc, | |
const scalar_t * data_attn_weight, | |
const int batch_size, | |
const int spatial_size, | |
const int num_heads, | |
const int channels, | |
const int num_levels, | |
const int num_query, | |
const int num_point, | |
scalar_t* grad_value, | |
scalar_t* grad_sampling_loc, | |
scalar_t* grad_attn_weight) | |
{ | |
const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels; | |
const int num_kernels = batch_size * num_query * num_heads * channels; | |
const int num_actual_kernels = batch_size * num_query * num_heads * channels; | |
if (channels > 1024) | |
{ | |
if ((channels & 1023) == 0) | |
{ | |
ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
num_threads*3*sizeof(scalar_t), stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
} | |
else | |
{ | |
ms_deformable_col2im_gpu_kernel_gm<scalar_t> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
} | |
} | |
else{ | |
switch(channels) | |
{ | |
case 1: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 2: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 4: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 8: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 16: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 32: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 64: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 128: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 256: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 512: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
case 1024: | |
ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
0, stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
break; | |
default: | |
if (channels < 64) | |
{ | |
ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
num_threads*3*sizeof(scalar_t), stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
} | |
else | |
{ | |
ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t> | |
<<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads, | |
num_threads*3*sizeof(scalar_t), stream>>>( | |
num_kernels, | |
grad_col, | |
data_value, | |
data_spatial_shapes, | |
data_level_start_index, | |
data_sampling_loc, | |
data_attn_weight, | |
batch_size, | |
spatial_size, | |
num_heads, | |
channels, | |
num_levels, | |
num_query, | |
num_point, | |
grad_value, | |
grad_sampling_loc, | |
grad_attn_weight); | |
} | |
} | |
} | |
cudaError_t err = cudaGetLastError(); | |
if (err != cudaSuccess) | |
{ | |
printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err)); | |
} | |
} |