Spaces:
Runtime error
Runtime error
File size: 1,301 Bytes
679a7db 962694d 679a7db 6b0f689 962694d 6b0f689 679a7db 6b0f689 679a7db c8fcfda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
import gradio as gr
import torchvision.transforms as transforms
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
efficientnet = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_efficientnet_b0', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
efficientnet.eval().to(device)
def inference(img):
img_transforms = transforms.Compose(
[transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]
)
img = img_transforms(img)
with torch.no_grad():
# mean and std are not multiplied by 255 as they are in training script
# torch dataloader reads data into bytes whereas loading directly
# through PIL creates a tensor with floats in [0,1] range
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)
img = img.float()
img = img.unsqueeze(0).sub_(mean).div_(std)
batch = torch.cat(
[img]
).to(device)
with torch.no_grad():
output = torch.nn.functional.softmax(efficientnet(batch), dim=1)
results = utils.pick_n_best(predictions=output, n=5)
return results
gr.Interface(inference,"image","text").launch() |