EfficientNet / app.py
akhaliq's picture
akhaliq HF staff
Update app.py
c5551ff
raw
history blame
713 Bytes
import torch
import gradio as gr
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
efficientnet = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_efficientnet_b0', pretrained=True)
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
efficientnet.eval().to(device)
def inference(img):
batch = torch.cat(
[utils.prepare_input_from_uri(img)]
).to(device)
with torch.no_grad():
output = torch.nn.functional.softmax(efficientnet(batch), dim=1)
results = utils.pick_n_best(predictions=output, n=5)
return results
gr.Interface(inference,gr.inputs.Image(type="file"),"text").launch()