akhaliq HF staff commited on
Commit
d9672a2
Β·
1 Parent(s): 2460f60

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -4,10 +4,10 @@ import torchvision.transforms as transforms
4
 
5
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
6
 
7
- resnet50 = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resnet50', pretrained=True)
8
  utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
9
 
10
- resnet50.eval().to(device)
11
 
12
  def inference(img):
13
  img_transforms = transforms.Compose(
@@ -28,16 +28,16 @@ def inference(img):
28
  ).to(device)
29
 
30
  with torch.no_grad():
31
- output = torch.nn.functional.softmax(resnet50(batch), dim=1)
32
 
33
  results = utils.pick_n_best(predictions=output, n=5)
34
 
35
  return results
36
 
37
- title="ResNet50"
38
- description="Gradio demo for ResNet50, ResNet50 model trained with mixed precision using Tensor Cores. To use it, simply upload your image or click on one of the examples below. Read more at the links below"
39
 
40
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1512.03385'>Deep Residual Learning for Image Recognition</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnet50v1.5'>Github Repo</a></p>"
41
 
42
  examples=[['food.jpeg']]
43
  gr.Interface(inference,gr.inputs.Image(type="pil"),"text",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)
 
4
 
5
  device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
6
 
7
+ resneXt = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resneXt')
8
  utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
9
 
10
+ resneXt.eval().to(device)
11
 
12
  def inference(img):
13
  img_transforms = transforms.Compose(
 
28
  ).to(device)
29
 
30
  with torch.no_grad():
31
+ output = torch.nn.functional.softmax(resneXt(batch), dim=1)
32
 
33
  results = utils.pick_n_best(predictions=output, n=5)
34
 
35
  return results
36
 
37
+ title="ResNeXt101"
38
+ description="Gradio demo for ResNeXt101, ResNet with bottleneck 3x3 Convolutions substituted by 3x3 Grouped Convolutions, trained with mixed precision using Tensor Cores. To use it, simply upload your image or click on one of the examples below. Read more at the links below"
39
 
40
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1611.05431'>Aggregated Residual Transformations for Deep Neural Networks</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnext101-32x4d'>Github Repo</a></p>"
41
 
42
  examples=[['food.jpeg']]
43
  gr.Interface(inference,gr.inputs.Image(type="pil"),"text",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)