Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,10 @@ import torchvision.transforms as transforms
|
|
4 |
|
5 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
6 |
|
7 |
-
|
8 |
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
|
9 |
|
10 |
-
|
11 |
|
12 |
def inference(img):
|
13 |
img_transforms = transforms.Compose(
|
@@ -28,16 +28,16 @@ def inference(img):
|
|
28 |
).to(device)
|
29 |
|
30 |
with torch.no_grad():
|
31 |
-
output = torch.nn.functional.softmax(
|
32 |
|
33 |
results = utils.pick_n_best(predictions=output, n=5)
|
34 |
|
35 |
return results
|
36 |
|
37 |
-
title="
|
38 |
-
description="Gradio demo for
|
39 |
|
40 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/
|
41 |
|
42 |
examples=[['food.jpeg']]
|
43 |
gr.Interface(inference,gr.inputs.Image(type="pil"),"text",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)
|
|
|
4 |
|
5 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
6 |
|
7 |
+
resneXt = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_resneXt')
|
8 |
utils = torch.hub.load('NVIDIA/DeepLearningExamples:torchhub', 'nvidia_convnets_processing_utils')
|
9 |
|
10 |
+
resneXt.eval().to(device)
|
11 |
|
12 |
def inference(img):
|
13 |
img_transforms = transforms.Compose(
|
|
|
28 |
).to(device)
|
29 |
|
30 |
with torch.no_grad():
|
31 |
+
output = torch.nn.functional.softmax(resneXt(batch), dim=1)
|
32 |
|
33 |
results = utils.pick_n_best(predictions=output, n=5)
|
34 |
|
35 |
return results
|
36 |
|
37 |
+
title="ResNeXt101"
|
38 |
+
description="Gradio demo for ResNeXt101, ResNet with bottleneck 3x3 Convolutions substituted by 3x3 Grouped Convolutions, trained with mixed precision using Tensor Cores. To use it, simply upload your image or click on one of the examples below. Read more at the links below"
|
39 |
|
40 |
+
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1611.05431'>Aggregated Residual Transformations for Deep Neural Networks</a> | <a href='https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets/resnext101-32x4d'>Github Repo</a></p>"
|
41 |
|
42 |
examples=[['food.jpeg']]
|
43 |
gr.Interface(inference,gr.inputs.Image(type="pil"),"text",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)
|