|
import torch |
|
from PIL import Image |
|
from torchvision import transforms |
|
import gradio as gr |
|
|
|
torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") |
|
|
|
model = torch.hub.load('pytorch/vision:v0.9.0', 'resnext50_32x4d', pretrained=True) |
|
|
|
|
|
model.eval() |
|
|
|
def inference(input_image): |
|
preprocess = transforms.Compose([ |
|
transforms.Resize(256), |
|
transforms.CenterCrop(224), |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
]) |
|
input_tensor = preprocess(input_image) |
|
input_batch = input_tensor.unsqueeze(0) |
|
|
|
|
|
if torch.cuda.is_available(): |
|
input_batch = input_batch.to('cuda') |
|
model.to('cuda') |
|
|
|
with torch.no_grad(): |
|
output = model(input_batch) |
|
|
|
probabilities = torch.nn.functional.softmax(output[0], dim=0) |
|
|
|
!wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt |
|
|
|
with open("imagenet_classes.txt", "r") as f: |
|
categories = [s.strip() for s in f.readlines()] |
|
|
|
|
|
top5_prob, top5_catid = torch.topk(probabilities, 5) |
|
result = {} |
|
for i in range(top5_prob.size(0)): |
|
result[categories[top5_catid[i]]] = top5_prob[i].item() |
|
return result |
|
|
|
inputs = gr.inputs.Image(type='pil') |
|
outputs = gr.outputs.Label(type="confidences",num_top_classes=5) |
|
|
|
title = "RESNEXT" |
|
description = "Gradio demo for RESNEXT, Next generation ResNets, more efficient and accurate. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1611.05431'>Aggregated Residual Transformations for Deep Neural Networks</a> | <a href='https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py'>Github Repo</a></p>" |
|
|
|
examples = [ |
|
['dog.jpg'] |
|
] |
|
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch() |