Transformer_NMT / app.py
akhaliq's picture
akhaliq HF staff
Create app.py
e5eda68
raw
history blame
1.93 kB
import torch
import gradio as gr
# Load an En-De Transformer model trained on WMT'19 data:
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model', tokenizer='moses', bpe='fastbpe')
# Load an En-Fr Transformer model trained on WMT'14 data :
en2fr = torch.hub.load('pytorch/fairseq', 'transformer.wmt14.en-fr', tokenizer='moses', bpe='subword_nmt')
def translate(text, lang):
if lang == "French":
# Manually tokenize:
en_toks = en2fr.tokenize(text)
# Manually apply BPE:
en_bpe = en2fr.apply_bpe(en_toks)
# Manually binarize:
en_bin = en2fr.binarize(en_bpe)
# Generate five translations with top-k sampling:
fr_bin = en2fr.generate(en_bin, beam=5, sampling=True, sampling_topk=20)
# Convert one of the samples to a string and detokenize
fr_sample = fr_bin[0]['tokens']
fr_bpe = en2fr.string(fr_sample)
fr_toks = en2fr.remove_bpe(fr_bpe)
fr = en2fr.detokenize(fr_toks)
return fr
else:
# Translate from En-De
de = en2de.translate(text)
return de
inputs = [
gr.inputs.Textbox(lines=5, label="Input Text in English"),
gr.inputs.Radio(choices=["French", "German"], type="value", label="Output Language")
]
outputs = gr.outputs.Textbox(label="Output Text")
title = "Transformer (NMT)"
description = "Gradio demo for Transformer (NMT). To use it, simply add your text, or click one of the examples to load them. Read more at the links below."
article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>"""
examples = [
["Hello world!"],
["PyTorch Hub is a pre-trained model repository designed to facilitate research reproducibility."]
]
gr.Interface(translate, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()