Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
# Load an En-De Transformer model trained on WMT'19 data: | |
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model', tokenizer='moses', bpe='fastbpe') | |
# Load an En-Fr Transformer model trained on WMT'14 data : | |
en2fr = torch.hub.load('pytorch/fairseq', 'transformer.wmt14.en-fr', tokenizer='moses', bpe='subword_nmt') | |
def translate(text, lang): | |
if lang == "French": | |
# Manually tokenize: | |
en_toks = en2fr.tokenize(text) | |
# Manually apply BPE: | |
en_bpe = en2fr.apply_bpe(en_toks) | |
# Manually binarize: | |
en_bin = en2fr.binarize(en_bpe) | |
# Generate five translations with top-k sampling: | |
fr_bin = en2fr.generate(en_bin, beam=5, sampling=True, sampling_topk=20) | |
# Convert one of the samples to a string and detokenize | |
fr_sample = fr_bin[0]['tokens'] | |
fr_bpe = en2fr.string(fr_sample) | |
fr_toks = en2fr.remove_bpe(fr_bpe) | |
fr = en2fr.detokenize(fr_toks) | |
return fr | |
else: | |
# Translate from En-De | |
de = en2de.translate(text) | |
return de | |
inputs = [ | |
gr.inputs.Textbox(lines=5, label="Input Text in English"), | |
gr.inputs.Radio(choices=["French", "German"], type="value", label="Output Language") | |
] | |
outputs = gr.outputs.Textbox(label="Output Text") | |
title = "Transformer (NMT)" | |
description = "Gradio demo for Transformer (NMT). To use it, simply add your text, or click one of the examples to load them. Read more at the links below." | |
article = """<p style='text-align: center'><a href='https://arxiv.org/abs/1806.00187'>Scaling Neural Machine Translation</a> | <a href='https://github.com/pytorch/fairseq/'>Github Repo</a></p>""" | |
examples = [ | |
["Hello world!"], | |
["PyTorch Hub is a pre-trained model repository designed to facilitate research reproducibility."] | |
] | |
gr.Interface(translate, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch() |