import torch import gradio as gr # Load an En-De Transformer model trained on WMT'19 data: en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de.single_model', tokenizer='moses', bpe='fastbpe') # Load an En-Fr Transformer model trained on WMT'14 data : en2fr = torch.hub.load('pytorch/fairseq', 'transformer.wmt14.en-fr', tokenizer='moses', bpe='subword_nmt') def translate(text, lang): if lang == "French": # Manually tokenize: en_toks = en2fr.tokenize(text) # Manually apply BPE: en_bpe = en2fr.apply_bpe(en_toks) # Manually binarize: en_bin = en2fr.binarize(en_bpe) # Generate five translations with top-k sampling: fr_bin = en2fr.generate(en_bin, beam=5, sampling=True, sampling_topk=20) # Convert one of the samples to a string and detokenize fr_sample = fr_bin[0]['tokens'] fr_bpe = en2fr.string(fr_sample) fr_toks = en2fr.remove_bpe(fr_bpe) fr = en2fr.detokenize(fr_toks) return fr else: # Translate from En-De de = en2de.translate(text) return de inputs = [ gr.inputs.Textbox(lines=5, label="Input Text in English"), gr.inputs.Radio(choices=["French", "German"], type="value", label="Output Language") ] outputs = gr.outputs.Textbox(label="Output Text") title = "Transformer (NMT)" description = "Gradio demo for Transformer (NMT). To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = """

Scaling Neural Machine Translation | Github Repo

""" examples = [ ["Hello world!"], ["PyTorch Hub is a pre-trained model repository designed to facilitate research reproducibility."] ] gr.Interface(translate, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()