File size: 20,880 Bytes
ce0c4f3
63d14c6
 
 
b5887d5
63d14c6
 
 
 
b5887d5
 
 
 
 
70dd883
fe44b10
b5887d5
ce0c4f3
f187eb1
fe44b10
 
 
 
 
 
b5887d5
f187eb1
b5887d5
fe44b10
 
 
 
 
 
b5887d5
 
f187eb1
63d14c6
 
 
 
 
 
ce0c4f3
b5887d5
 
 
 
 
 
 
 
 
63d14c6
 
 
 
b5887d5
63d14c6
b5887d5
 
fe44b10
b5887d5
 
 
 
63d14c6
 
 
 
 
 
 
b5887d5
63d14c6
b5887d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d14c6
b5887d5
63d14c6
b5887d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63d14c6
 
 
b5887d5
 
 
63d14c6
 
 
b5887d5
63d14c6
b5887d5
63d14c6
b5887d5
 
63d14c6
b5887d5
 
 
63d14c6
 
 
b5887d5
70dd883
b5887d5
63d14c6
70dd883
b5887d5
fe44b10
b5887d5
70dd883
 
 
 
fe44b10
70dd883
 
 
 
 
 
 
63d14c6
70dd883
 
 
 
b5887d5
 
 
 
 
 
 
70dd883
63d14c6
 
b5887d5
 
 
 
 
 
 
 
 
70dd883
 
b5887d5
70dd883
63d14c6
 
b5887d5
 
 
 
 
63d14c6
b5887d5
70dd883
b5887d5
 
 
70dd883
b5887d5
63d14c6
b5887d5
 
fe44b10
b5887d5
 
 
 
70dd883
b5887d5
63d14c6
 
 
 
70dd883
 
63d14c6
 
 
 
 
70dd883
 
b5887d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70dd883
b5887d5
 
 
 
 
 
 
 
63d14c6
b5887d5
 
 
 
 
 
 
 
 
 
 
fe44b10
b5887d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47efb70
 
b5887d5
 
 
 
 
 
 
 
 
 
 
70dd883
b5887d5
 
70dd883
b5887d5
63d14c6
 
b5887d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cdcf8
b5887d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67e752
b5887d5
 
 
 
c67e752
b5887d5
 
c67e752
b5887d5
c67e752
b5887d5
 
c67e752
b5887d5
 
 
 
 
c67e752
b5887d5
 
 
c67e752
 
b5887d5
 
 
 
c67e752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cdcf8
b5887d5
 
c67e752
63d14c6
 
b5887d5
63d14c6
47efb70
b5887d5
 
63d14c6
 
 
57cdcf8
63d14c6
 
b5887d5
47efb70
63d14c6
 
c16a48d
1fdbd50
b5887d5
1fdbd50
 
 
b5887d5
 
81de47f
b513799
 
b5887d5
 
fe44b10
 
 
 
 
 
b5887d5
 
edfab78
715b64a
1d94803
b513799
70dd883
b513799
b5887d5
 
70dd883
b5887d5
b513799
70dd883
 
 
 
 
b513799
70dd883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5887d5
63d14c6
b5887d5
c67e752
b5887d5
 
 
 
 
 
 
 
 
 
 
 
fe44b10
 
 
 
 
 
 
 
 
 
 
 
c67e752
 
b5887d5
 
 
 
 
 
 
 
 
 
 
c67e752
 
b5887d5
 
 
63d14c6
 
70dd883
b5887d5
63d14c6
 
 
b5887d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
import gradio as gr
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModel
import tempfile
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from packaging import version
import os
from torchao.quantization import (
    Int4WeightOnlyConfig,
    Int8WeightOnlyConfig,
    Int8DynamicActivationInt8WeightConfig,
    Float8WeightOnlyConfig,
    Float8DynamicActivationFloat8WeightConfig,
    GemliteUIntXWeightOnlyConfig,
)

MAP_QUANT_TYPE_TO_NAME = {
    "Int4WeightOnly": "int4wo",
    "GemliteUIntXWeightOnly": "intxwo-gemlite"
    "Int8WeightOnly": "int8wo",
    "Int8DynamicActivationInt8Weight": "int8da8w8",
    "Float8WeightOnly": "float8wo",
    "Float8DynamicActivationFloat8Weight": "float8da8w8",
    "autoquant": "autoquant",
}
MAP_QUANT_TYPE_TO_CONFIG = {
    "Int4WeightOnly": Int4WeightOnlyConfig,
    "GemliteUIntXWeightOnly": GemliteUIntXWeightOnlyConfig,
    "Int8WeightOnly": Int8WeightOnlyConfig,
    "Int8DynamicActivationInt8Weight": Int8DynamicActivationInt8WeightConfig,
    "Float8WeightOnly": Float8WeightOnlyConfig,
    "Float8DynamicActivationFloat8Weight": Float8DynamicActivationFloat8WeightConfig,
}


def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
    # ^ expect a gr.OAuthProfile object as input to get the user's profile
    # if the user is not logged in, profile will be None
    if profile is None:
        return "Hello !"
    return f"Hello {profile.name} !"


def check_model_exists(
    oauth_token: gr.OAuthToken | None,
    username,
    quantization_type,
    group_size,
    model_name,
    quantized_model_name,
):
    """Check if a model exists in the user's Hugging Face repository."""
    try:
        models = list_models(author=username, token=oauth_token.token)
        model_names = [model.id for model in models]
        if quantized_model_name:
            repo_name = f"{username}/{quantized_model_name}"
        else:
            if (
                quantization_type in ["Int4WeightOnly", "GemliteUIntXWeightOnly"]
            ) and (group_size is not None):
                repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}"
            else:
                repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}"
        if repo_name in model_names:
            return f"Model '{repo_name}' already exists in your repository."
        else:
            return None  # Model does not exist
    except Exception as e:
        return f"Error checking model existence: {str(e)}"


def create_model_card(model_name, quantization_type, group_size):
    # Try to download the original README
    original_readme = ""
    original_yaml_header = ""
    try:
        # Download the README.md file from the original model
        model_path = snapshot_download(
            repo_id=model_name, allow_patterns=["README.md"], repo_type="model"
        )
        readme_path = os.path.join(model_path, "README.md")

        if os.path.exists(readme_path):
            with open(readme_path, "r", encoding="utf-8") as f:
                content = f.read()

                if content.startswith("---"):
                    parts = content.split("---", 2)
                    if len(parts) >= 3:
                        original_yaml_header = parts[1]
                        original_readme = "---".join(parts[2:])
                    else:
                        original_readme = content
                else:
                    original_readme = content
    except Exception as e:
        print(f"Error reading original README: {str(e)}")
        original_readme = ""

    # Create new YAML header with base_model field
    yaml_header = f"""---
base_model:
- {model_name}"""

    # Add any original YAML fields except base_model
    if original_yaml_header:
        in_base_model_section = False
        found_tags = False
        for line in original_yaml_header.strip().split("\n"):
            # Skip if we're in a base_model section that continues to the next line
            if in_base_model_section:
                if (
                    line.strip().startswith("-")
                    or not line.strip()
                    or line.startswith(" ")
                ):
                    continue
                else:
                    in_base_model_section = False

            # Check for base_model field
            if line.strip().startswith("base_model:"):
                in_base_model_section = True
                # If base_model has inline value (like "base_model: model_name")
                if ":" in line and len(line.split(":", 1)[1].strip()) > 0:
                    in_base_model_section = False
                continue

            # Check for tags field and add bnb-my-repo
            if line.strip().startswith("tags:"):
                found_tags = True
                yaml_header += f"\n{line}"
                yaml_header += "\n- torchao-my-repo"
                continue

            yaml_header += f"\n{line}"

        # If tags field wasn't found, add it
        if not found_tags:
            yaml_header += "\ntags:"
            yaml_header += "\n- torchao-my-repo"
    # Complete the YAML header
    yaml_header += "\n---"

    # Create the quantization info section
    quant_info = f"""
# {model_name} (Quantized)

## Description
This model is a quantized version of the original model [`{model_name}`](https://huggingface.co/{model_name}). 

It's quantized using the TorchAO library using the [torchao-my-repo](https://huggingface.co/spaces/pytorch/torchao-my-repo) space.

## Quantization Details
- **Quantization Type**: {quantization_type}
- **Group Size**: {group_size}

"""

    # Combine everything
    model_card = yaml_header + quant_info

    # Append original README content if available
    if original_readme and not original_readme.isspace():
        model_card += "\n\n# πŸ“„ Original Model Information\n\n" + original_readme
    return model_card


def quantize_model(
    model_name, quantization_type, group_size=128, auth_token=None, username=None, progress=gr.Progress()
):
    print(f"Quantizing model: {quantization_type}")
    progress(0, desc="Preparing Quantization")
    if (
        quantization_type == "GemliteUIntXWeightOnly"
    ):
        quant_config = MAP_QUANT_TYPE_TO_CONFIG[quantization_type](
            group_size=group_size
        )
        quantization_config = TorchAoConfig(quant_config)
    elif quantization_type == "Int4WeightOnly":
        from torchao.dtypes import Int4CPULayout
        
        quant_config = MAP_QUANT_TYPE_TO_CONFIG[quantization_type](
            group_size=group_size, layout=Int4CPULayout()
        )
        quantization_config = TorchAoConfig(quant_config)
    elif quantization_type == "autoquant":
        quantization_config = TorchAoConfig(quantization_type)
    else:
        quant_config = MAP_QUANT_TYPE_TO_CONFIG[quantization_type]()
        quantization_config = TorchAoConfig(quant_config)
    progress(0.10, desc="Quantizing model")
    model = AutoModel.from_pretrained(
        model_name,
        torch_dtype="auto",
        quantization_config=quantization_config,
        device_map="cpu",
        use_auth_token=auth_token.token,
    )
    progress(0.45, desc="Quantization completed")
    return model


def save_model(
    model,
    model_name,
    quantization_type,
    group_size=128,
    username=None,
    auth_token=None,
    quantized_model_name=None,
    public=True,
    progress=gr.Progress(),
):
    progress(0.50, desc="Preparing to push")
    print("Saving quantized model")
    with tempfile.TemporaryDirectory() as tmpdirname:
        # Load and save the tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            model_name, use_auth_token=auth_token.token
        )
        tokenizer.save_pretrained(tmpdirname, use_auth_token=auth_token.token)

        # Save the model
        progress(0.60, desc="Saving model")
        model.save_pretrained(
            tmpdirname, safe_serialization=False, use_auth_token=auth_token.token
        )
        
        if quantized_model_name:
            repo_name = f"{username}/{quantized_model_name}"
        else:
            if (
                quantization_type in ["Int4WeightOnly", "GemliteUIntXWeightOnly"]
            ) and (group_size is not None):
                repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}"
            else:
                repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}"
        progress(0.70, desc="Creating model card")
        model_card = create_model_card(model_name, quantization_type, group_size)
        with open(os.path.join(tmpdirname, "README.md"), "w") as f:
            f.write(model_card)
        # Push to Hub
        api = HfApi(token=auth_token.token)
        api.create_repo(repo_name, exist_ok=True, private=not public)
        progress(0.80, desc="Pushing to Hub")
        api.upload_folder(
            folder_path=tmpdirname,
            repo_id=repo_name,
            repo_type="model",
        )
        progress(1.00, desc="Pushing to Hub completed")
    
    import io
    from contextlib import redirect_stdout
    import html

    # Capture the model architecture string
    f = io.StringIO()
    with redirect_stdout(f):
        print(model)
    model_architecture_str = f.getvalue()

    # Escape HTML characters and format with line breaks
    model_architecture_str_html = html.escape(model_architecture_str).replace(
        "\n", "<br/>"
    )

    # Format it for display in markdown with proper styling
    model_architecture_info = f"""
    <div class="model-architecture-container" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
        <h3 style="margin-top: 0; color: #2E7D32;">πŸ“‹ Model Architecture</h3>
        <div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
        <div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
        </div>
    </div>
    """

    repo_link = f"""
    <div class="repo-link" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
        <h3 style="margin-top: 0; color: #2E7D32;">πŸ”— Repository Link</h3>
        <p>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a></p>
    </div>
    """
    return (
        f"<h1>πŸŽ‰ Quantization Completed</h1><br/>{repo_link}{model_architecture_info}"
    )


def quantize_and_save(
    profile: gr.OAuthProfile | None,
    oauth_token: gr.OAuthToken | None,
    model_name,
    quantization_type,
    group_size,
    quantized_model_name,
    public,
):
    if oauth_token is None:
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    if not profile:
        return """
        <div class="error-box">
            <h3>❌ Authentication Error</h3>
            <p>Please sign in to your HuggingFace account to use the quantizer.</p>
        </div>
        """
    if not group_size.isdigit():
        if group_size != "":
            return """
            <div class="error-box">
                <h3>❌ Group Size Error</h3>
                <p>Group Size is a parameter for Int4WeightOnly or GemliteUIntXWeightOnly</p>
            </div>
            """

    if group_size and group_size.strip():
        group_size = int(group_size)
    else:
        group_size = None

    exists_message = check_model_exists(
        oauth_token,
        profile.username,
        quantization_type,
        group_size,
        model_name,
        quantized_model_name,
    )
    if exists_message:
        return f"""
        <div class="warning-box">
            <h3>⚠️ Model Already Exists</h3>
            <p>{exists_message}</p>
        </div>
        """
    # if quantization_type == "int4_weight_only" :
    #     return "int4_weight_only not supported on cpu"

    try:
        quantized_model = quantize_model(
            model_name, quantization_type, group_size, oauth_token, profile.username
        )
        return save_model(
            quantized_model,
            model_name,
            quantization_type,
            group_size,
            profile.username,
            oauth_token,
            quantized_model_name,
            public,
        )
    except Exception as e:
        # raise e
        return str(e)


def get_model_size(model):
    """
    Calculate the size of a PyTorch model in gigabytes.

    Args:
        model: PyTorch model

    Returns:
        float: Size of the model in GB
    """
    # Get model state dict
    state_dict = model.state_dict()

    # Calculate total size in bytes
    total_size = 0
    for param in state_dict.values():
        # Calculate bytes for each parameter
        total_size += param.nelement() * param.element_size()

    # Convert bytes to gigabytes (1 GB = 1,073,741,824 bytes)
    size_gb = total_size / (1024**3)
    size_gb = round(size_gb, 2)

    return size_gb


# Add enhanced CSS styling
css = """
/* Custom CSS for enhanced UI */
.gradio-container {overflow-y: auto;}

/* Fix alignment for radio buttons and dropdowns */
.gradio-radio, .gradio-dropdown {
    display: flex !important;
    align-items: center !important;
    margin: 10px 0 !important;
}

/* Consistent spacing and alignment */
.gradio-dropdown, .gradio-textbox, .gradio-radio {
    margin-bottom: 12px !important;
    width: 100% !important;
}


button[variant="primary"]::before {
    content: "πŸ”₯ ";  /* PyTorch flame icon */
}

button[variant="primary"]:hover {
    transform: translateY(-5px) scale(1.05) !important;
    box-shadow: 0 10px 25px rgba(238, 76, 44, 0.7) !important;
}

@keyframes pytorch-glow {
    from {
        box-shadow: 0 0 10px rgba(238, 76, 44, 0.5);
    }
    to {
        box-shadow: 0 0 20px rgba(238, 76, 44, 0.8), 0 0 30px rgba(255, 156, 0, 0.5);
    }
}

/* Login button styling */
#login-button {
    background: linear-gradient(135deg, #EE4C2C, #FF9C00) !important;
    color: white !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 15px !important;
    box-shadow: 0 0 15px rgba(238, 76, 44, 0.5) !important;
    transition: all 0.3s ease !important;
    max-width: 300px !important;
    margin: 0 auto !important;
}

.quantize-button {
    background: linear-gradient(135deg, #EE4C2C, #FF9C00) !important;
    color: white !important;
    font-weight: 700 !important;
    border: none !important;
    border-radius: 15px !important;
    box-shadow: 0 0 15px rgba(238, 76, 44, 0.5) !important;
    transition: all 0.3s ease !important;
    animation: pytorch-glow 1.5s infinite alternate !important;
    transform-origin: center !important;
    letter-spacing: 0.5px !important;
    text-shadow: 0 1px 2px rgba(0, 0, 0, 0.2) !important;
}

.quantize-button:hover {
    transform: translateY(-3px) scale(1.03) !important;
    box-shadow: 0 8px 20px rgba(238, 76, 44, 0.7) !important;
}
"""

# Update the main app layout
with gr.Blocks(css=css) as demo:
    gr.Markdown(
        """
        # πŸ€— TorchAO Model Quantizer ✨
        
        Quantize your favorite Hugging Face models using TorchAO and save them to your profile!
        
        <br/>
        """
    )

    gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)

    m1 = gr.Markdown()
    demo.load(hello, inputs=None, outputs=m1)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                model_name = HuggingfaceHubSearch(
                    label="πŸ” Hub Model ID",
                    placeholder="Search for model id on Huggingface",
                    search_type="model",
                )

            gr.Markdown("""### βš™οΈ Quantization Settings""")
            with gr.Row():
                with gr.Column():
                    quantization_type = gr.Dropdown(
                        info="Select the Quantization method",
                        choices=[
                            "Int4WeightOnly",
                            "GemliteUIntXWeightOnly"
                            "Int8WeightOnly",
                            "Int8DynamicActivationInt8Weight",
                            "Float8WeightOnly",
                            "Float8DynamicActivationFloat8Weight",
                            "autoquant",
                        ],
                        value="int8_weight_only",
                        filterable=False,
                        show_label=False,
                    )

                    group_size = gr.Textbox(
                        info="Group Size (only for int4_weight_only and int8_weight_only)",
                        value="128",
                        interactive=(quantization_type.value == "int4_weight_only" or quantization_type.value == "int8_weight_only"),
                        show_label=False,
                    )

            gr.Markdown(
                        """
                        ### πŸ’Ύ Saving Settings
                        """
                    )
            with gr.Row():
                quantized_model_name = gr.Textbox(
                    label="✏️ Model Name",
                    info="Model Name (optional : to override default)",
                    value="",
                    interactive=True,
                    elem_classes="model-name-textbox",
                    show_label=False,
                )
            with gr.Row():
                public = gr.Checkbox(
                    label="🌐 Make model public",
                    info="If checked, the model will be publicly accessible",
                    value=True,
                    interactive=True,
                    show_label=True,
                )

        with gr.Column():
            quantize_button = gr.Button(
                "πŸš€ Quantize and Push to Hub", elem_classes="quantize-button", elem_id="quantize-button"
            )
            output_link = gr.Markdown(
                label="πŸ”— Quantized Model Info", container=True, min_height=200
            )

    # Add information section
    with gr.Accordion("πŸ“š About TorchAO Quantization", open=True):
        gr.Markdown(
            """
            ## πŸ“ Quantization Options
            
            ### Quantization Types
                            "Int4WeightOnly",
                            "GemliteUIntXWeightOnly"
                            "Int8WeightOnly",
                            "Int8DynamicActivationInt8Weight",
                            "Float8WeightOnly",
                            "Float8DynamicActivationFloat8Weight",
            - **Int4WeightOnly**: 4-bit weight-only quantization
            - **GemliteUIntXWeightOnly**: uintx gemlite quantization (default to 4 bit only for now)
            - **Int8WeightOnly**: 8-bit weight-only quantization
            - **Int8DynamicActivationInt8Weight**: 8-bit quantization for both weights and activations
            - **Float8WeightOnly**: float8-bit weight-only quantization
            - **Float8DynamicActivationFloat8Weight**: float8-bit quantization for both weights and activations
            - **autoquant**: automatic quantization (uses the best quantization method for the model)

            ### Group Size
            - Only applicable for int4_weight_only and int8_weight_only quantization
            - Default value is 128
            - Affects the granularity of quantization
            
            ## πŸ” How It Works
            1. Downloads the original model
            2. Applies TorchAO quantization with your selected settings
            3. Uploads the quantized model to your HuggingFace account
            
            ## πŸ“Š Memory Benefits
            - int4 quantization can reduce model size by up to 75%
            - int8 quantization typically reduces size by about 50%
            """
        )
    # Keep existing click handler
    quantize_button.click(
        fn=quantize_and_save,
        inputs=[model_name, quantization_type, group_size, quantized_model_name, public],
        outputs=[output_link],
    )

# Launch the app
demo.launch(share=True)