Spaces:
Running
Running
File size: 20,880 Bytes
ce0c4f3 63d14c6 b5887d5 63d14c6 b5887d5 70dd883 fe44b10 b5887d5 ce0c4f3 f187eb1 fe44b10 b5887d5 f187eb1 b5887d5 fe44b10 b5887d5 f187eb1 63d14c6 ce0c4f3 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 fe44b10 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 63d14c6 b5887d5 70dd883 b5887d5 63d14c6 70dd883 b5887d5 fe44b10 b5887d5 70dd883 fe44b10 70dd883 63d14c6 70dd883 b5887d5 70dd883 63d14c6 b5887d5 70dd883 b5887d5 70dd883 63d14c6 b5887d5 63d14c6 b5887d5 70dd883 b5887d5 70dd883 b5887d5 63d14c6 b5887d5 fe44b10 b5887d5 70dd883 b5887d5 63d14c6 70dd883 63d14c6 70dd883 b5887d5 70dd883 b5887d5 63d14c6 b5887d5 fe44b10 b5887d5 47efb70 b5887d5 70dd883 b5887d5 70dd883 b5887d5 63d14c6 b5887d5 57cdcf8 b5887d5 c67e752 b5887d5 c67e752 b5887d5 c67e752 b5887d5 c67e752 b5887d5 c67e752 b5887d5 c67e752 b5887d5 c67e752 b5887d5 c67e752 57cdcf8 b5887d5 c67e752 63d14c6 b5887d5 63d14c6 47efb70 b5887d5 63d14c6 57cdcf8 63d14c6 b5887d5 47efb70 63d14c6 c16a48d 1fdbd50 b5887d5 1fdbd50 b5887d5 81de47f b513799 b5887d5 fe44b10 b5887d5 edfab78 715b64a 1d94803 b513799 70dd883 b513799 b5887d5 70dd883 b5887d5 b513799 70dd883 b513799 70dd883 b5887d5 63d14c6 b5887d5 c67e752 b5887d5 fe44b10 c67e752 b5887d5 c67e752 b5887d5 63d14c6 70dd883 b5887d5 63d14c6 b5887d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import gradio as gr
import torch
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModel
import tempfile
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub import list_models
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from packaging import version
import os
from torchao.quantization import (
Int4WeightOnlyConfig,
Int8WeightOnlyConfig,
Int8DynamicActivationInt8WeightConfig,
Float8WeightOnlyConfig,
Float8DynamicActivationFloat8WeightConfig,
GemliteUIntXWeightOnlyConfig,
)
MAP_QUANT_TYPE_TO_NAME = {
"Int4WeightOnly": "int4wo",
"GemliteUIntXWeightOnly": "intxwo-gemlite"
"Int8WeightOnly": "int8wo",
"Int8DynamicActivationInt8Weight": "int8da8w8",
"Float8WeightOnly": "float8wo",
"Float8DynamicActivationFloat8Weight": "float8da8w8",
"autoquant": "autoquant",
}
MAP_QUANT_TYPE_TO_CONFIG = {
"Int4WeightOnly": Int4WeightOnlyConfig,
"GemliteUIntXWeightOnly": GemliteUIntXWeightOnlyConfig,
"Int8WeightOnly": Int8WeightOnlyConfig,
"Int8DynamicActivationInt8Weight": Int8DynamicActivationInt8WeightConfig,
"Float8WeightOnly": Float8WeightOnlyConfig,
"Float8DynamicActivationFloat8Weight": Float8DynamicActivationFloat8WeightConfig,
}
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
# ^ expect a gr.OAuthProfile object as input to get the user's profile
# if the user is not logged in, profile will be None
if profile is None:
return "Hello !"
return f"Hello {profile.name} !"
def check_model_exists(
oauth_token: gr.OAuthToken | None,
username,
quantization_type,
group_size,
model_name,
quantized_model_name,
):
"""Check if a model exists in the user's Hugging Face repository."""
try:
models = list_models(author=username, token=oauth_token.token)
model_names = [model.id for model in models]
if quantized_model_name:
repo_name = f"{username}/{quantized_model_name}"
else:
if (
quantization_type in ["Int4WeightOnly", "GemliteUIntXWeightOnly"]
) and (group_size is not None):
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}"
else:
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}"
if repo_name in model_names:
return f"Model '{repo_name}' already exists in your repository."
else:
return None # Model does not exist
except Exception as e:
return f"Error checking model existence: {str(e)}"
def create_model_card(model_name, quantization_type, group_size):
# Try to download the original README
original_readme = ""
original_yaml_header = ""
try:
# Download the README.md file from the original model
model_path = snapshot_download(
repo_id=model_name, allow_patterns=["README.md"], repo_type="model"
)
readme_path = os.path.join(model_path, "README.md")
if os.path.exists(readme_path):
with open(readme_path, "r", encoding="utf-8") as f:
content = f.read()
if content.startswith("---"):
parts = content.split("---", 2)
if len(parts) >= 3:
original_yaml_header = parts[1]
original_readme = "---".join(parts[2:])
else:
original_readme = content
else:
original_readme = content
except Exception as e:
print(f"Error reading original README: {str(e)}")
original_readme = ""
# Create new YAML header with base_model field
yaml_header = f"""---
base_model:
- {model_name}"""
# Add any original YAML fields except base_model
if original_yaml_header:
in_base_model_section = False
found_tags = False
for line in original_yaml_header.strip().split("\n"):
# Skip if we're in a base_model section that continues to the next line
if in_base_model_section:
if (
line.strip().startswith("-")
or not line.strip()
or line.startswith(" ")
):
continue
else:
in_base_model_section = False
# Check for base_model field
if line.strip().startswith("base_model:"):
in_base_model_section = True
# If base_model has inline value (like "base_model: model_name")
if ":" in line and len(line.split(":", 1)[1].strip()) > 0:
in_base_model_section = False
continue
# Check for tags field and add bnb-my-repo
if line.strip().startswith("tags:"):
found_tags = True
yaml_header += f"\n{line}"
yaml_header += "\n- torchao-my-repo"
continue
yaml_header += f"\n{line}"
# If tags field wasn't found, add it
if not found_tags:
yaml_header += "\ntags:"
yaml_header += "\n- torchao-my-repo"
# Complete the YAML header
yaml_header += "\n---"
# Create the quantization info section
quant_info = f"""
# {model_name} (Quantized)
## Description
This model is a quantized version of the original model [`{model_name}`](https://huggingface.co/{model_name}).
It's quantized using the TorchAO library using the [torchao-my-repo](https://huggingface.co/spaces/pytorch/torchao-my-repo) space.
## Quantization Details
- **Quantization Type**: {quantization_type}
- **Group Size**: {group_size}
"""
# Combine everything
model_card = yaml_header + quant_info
# Append original README content if available
if original_readme and not original_readme.isspace():
model_card += "\n\n# π Original Model Information\n\n" + original_readme
return model_card
def quantize_model(
model_name, quantization_type, group_size=128, auth_token=None, username=None, progress=gr.Progress()
):
print(f"Quantizing model: {quantization_type}")
progress(0, desc="Preparing Quantization")
if (
quantization_type == "GemliteUIntXWeightOnly"
):
quant_config = MAP_QUANT_TYPE_TO_CONFIG[quantization_type](
group_size=group_size
)
quantization_config = TorchAoConfig(quant_config)
elif quantization_type == "Int4WeightOnly":
from torchao.dtypes import Int4CPULayout
quant_config = MAP_QUANT_TYPE_TO_CONFIG[quantization_type](
group_size=group_size, layout=Int4CPULayout()
)
quantization_config = TorchAoConfig(quant_config)
elif quantization_type == "autoquant":
quantization_config = TorchAoConfig(quantization_type)
else:
quant_config = MAP_QUANT_TYPE_TO_CONFIG[quantization_type]()
quantization_config = TorchAoConfig(quant_config)
progress(0.10, desc="Quantizing model")
model = AutoModel.from_pretrained(
model_name,
torch_dtype="auto",
quantization_config=quantization_config,
device_map="cpu",
use_auth_token=auth_token.token,
)
progress(0.45, desc="Quantization completed")
return model
def save_model(
model,
model_name,
quantization_type,
group_size=128,
username=None,
auth_token=None,
quantized_model_name=None,
public=True,
progress=gr.Progress(),
):
progress(0.50, desc="Preparing to push")
print("Saving quantized model")
with tempfile.TemporaryDirectory() as tmpdirname:
# Load and save the tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name, use_auth_token=auth_token.token
)
tokenizer.save_pretrained(tmpdirname, use_auth_token=auth_token.token)
# Save the model
progress(0.60, desc="Saving model")
model.save_pretrained(
tmpdirname, safe_serialization=False, use_auth_token=auth_token.token
)
if quantized_model_name:
repo_name = f"{username}/{quantized_model_name}"
else:
if (
quantization_type in ["Int4WeightOnly", "GemliteUIntXWeightOnly"]
) and (group_size is not None):
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}"
else:
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}"
progress(0.70, desc="Creating model card")
model_card = create_model_card(model_name, quantization_type, group_size)
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
f.write(model_card)
# Push to Hub
api = HfApi(token=auth_token.token)
api.create_repo(repo_name, exist_ok=True, private=not public)
progress(0.80, desc="Pushing to Hub")
api.upload_folder(
folder_path=tmpdirname,
repo_id=repo_name,
repo_type="model",
)
progress(1.00, desc="Pushing to Hub completed")
import io
from contextlib import redirect_stdout
import html
# Capture the model architecture string
f = io.StringIO()
with redirect_stdout(f):
print(model)
model_architecture_str = f.getvalue()
# Escape HTML characters and format with line breaks
model_architecture_str_html = html.escape(model_architecture_str).replace(
"\n", "<br/>"
)
# Format it for display in markdown with proper styling
model_architecture_info = f"""
<div class="model-architecture-container" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
<h3 style="margin-top: 0; color: #2E7D32;">π Model Architecture</h3>
<div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
<div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
</div>
</div>
"""
repo_link = f"""
<div class="repo-link" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
<h3 style="margin-top: 0; color: #2E7D32;">π Repository Link</h3>
<p>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a></p>
</div>
"""
return (
f"<h1>π Quantization Completed</h1><br/>{repo_link}{model_architecture_info}"
)
def quantize_and_save(
profile: gr.OAuthProfile | None,
oauth_token: gr.OAuthToken | None,
model_name,
quantization_type,
group_size,
quantized_model_name,
public,
):
if oauth_token is None:
return """
<div class="error-box">
<h3>β Authentication Error</h3>
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
</div>
"""
if not profile:
return """
<div class="error-box">
<h3>β Authentication Error</h3>
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
</div>
"""
if not group_size.isdigit():
if group_size != "":
return """
<div class="error-box">
<h3>β Group Size Error</h3>
<p>Group Size is a parameter for Int4WeightOnly or GemliteUIntXWeightOnly</p>
</div>
"""
if group_size and group_size.strip():
group_size = int(group_size)
else:
group_size = None
exists_message = check_model_exists(
oauth_token,
profile.username,
quantization_type,
group_size,
model_name,
quantized_model_name,
)
if exists_message:
return f"""
<div class="warning-box">
<h3>β οΈ Model Already Exists</h3>
<p>{exists_message}</p>
</div>
"""
# if quantization_type == "int4_weight_only" :
# return "int4_weight_only not supported on cpu"
try:
quantized_model = quantize_model(
model_name, quantization_type, group_size, oauth_token, profile.username
)
return save_model(
quantized_model,
model_name,
quantization_type,
group_size,
profile.username,
oauth_token,
quantized_model_name,
public,
)
except Exception as e:
# raise e
return str(e)
def get_model_size(model):
"""
Calculate the size of a PyTorch model in gigabytes.
Args:
model: PyTorch model
Returns:
float: Size of the model in GB
"""
# Get model state dict
state_dict = model.state_dict()
# Calculate total size in bytes
total_size = 0
for param in state_dict.values():
# Calculate bytes for each parameter
total_size += param.nelement() * param.element_size()
# Convert bytes to gigabytes (1 GB = 1,073,741,824 bytes)
size_gb = total_size / (1024**3)
size_gb = round(size_gb, 2)
return size_gb
# Add enhanced CSS styling
css = """
/* Custom CSS for enhanced UI */
.gradio-container {overflow-y: auto;}
/* Fix alignment for radio buttons and dropdowns */
.gradio-radio, .gradio-dropdown {
display: flex !important;
align-items: center !important;
margin: 10px 0 !important;
}
/* Consistent spacing and alignment */
.gradio-dropdown, .gradio-textbox, .gradio-radio {
margin-bottom: 12px !important;
width: 100% !important;
}
button[variant="primary"]::before {
content: "π₯ "; /* PyTorch flame icon */
}
button[variant="primary"]:hover {
transform: translateY(-5px) scale(1.05) !important;
box-shadow: 0 10px 25px rgba(238, 76, 44, 0.7) !important;
}
@keyframes pytorch-glow {
from {
box-shadow: 0 0 10px rgba(238, 76, 44, 0.5);
}
to {
box-shadow: 0 0 20px rgba(238, 76, 44, 0.8), 0 0 30px rgba(255, 156, 0, 0.5);
}
}
/* Login button styling */
#login-button {
background: linear-gradient(135deg, #EE4C2C, #FF9C00) !important;
color: white !important;
font-weight: 700 !important;
border: none !important;
border-radius: 15px !important;
box-shadow: 0 0 15px rgba(238, 76, 44, 0.5) !important;
transition: all 0.3s ease !important;
max-width: 300px !important;
margin: 0 auto !important;
}
.quantize-button {
background: linear-gradient(135deg, #EE4C2C, #FF9C00) !important;
color: white !important;
font-weight: 700 !important;
border: none !important;
border-radius: 15px !important;
box-shadow: 0 0 15px rgba(238, 76, 44, 0.5) !important;
transition: all 0.3s ease !important;
animation: pytorch-glow 1.5s infinite alternate !important;
transform-origin: center !important;
letter-spacing: 0.5px !important;
text-shadow: 0 1px 2px rgba(0, 0, 0, 0.2) !important;
}
.quantize-button:hover {
transform: translateY(-3px) scale(1.03) !important;
box-shadow: 0 8px 20px rgba(238, 76, 44, 0.7) !important;
}
"""
# Update the main app layout
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# π€ TorchAO Model Quantizer β¨
Quantize your favorite Hugging Face models using TorchAO and save them to your profile!
<br/>
"""
)
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
m1 = gr.Markdown()
demo.load(hello, inputs=None, outputs=m1)
with gr.Row():
with gr.Column():
with gr.Row():
model_name = HuggingfaceHubSearch(
label="π Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
gr.Markdown("""### βοΈ Quantization Settings""")
with gr.Row():
with gr.Column():
quantization_type = gr.Dropdown(
info="Select the Quantization method",
choices=[
"Int4WeightOnly",
"GemliteUIntXWeightOnly"
"Int8WeightOnly",
"Int8DynamicActivationInt8Weight",
"Float8WeightOnly",
"Float8DynamicActivationFloat8Weight",
"autoquant",
],
value="int8_weight_only",
filterable=False,
show_label=False,
)
group_size = gr.Textbox(
info="Group Size (only for int4_weight_only and int8_weight_only)",
value="128",
interactive=(quantization_type.value == "int4_weight_only" or quantization_type.value == "int8_weight_only"),
show_label=False,
)
gr.Markdown(
"""
### πΎ Saving Settings
"""
)
with gr.Row():
quantized_model_name = gr.Textbox(
label="βοΈ Model Name",
info="Model Name (optional : to override default)",
value="",
interactive=True,
elem_classes="model-name-textbox",
show_label=False,
)
with gr.Row():
public = gr.Checkbox(
label="π Make model public",
info="If checked, the model will be publicly accessible",
value=True,
interactive=True,
show_label=True,
)
with gr.Column():
quantize_button = gr.Button(
"π Quantize and Push to Hub", elem_classes="quantize-button", elem_id="quantize-button"
)
output_link = gr.Markdown(
label="π Quantized Model Info", container=True, min_height=200
)
# Add information section
with gr.Accordion("π About TorchAO Quantization", open=True):
gr.Markdown(
"""
## π Quantization Options
### Quantization Types
"Int4WeightOnly",
"GemliteUIntXWeightOnly"
"Int8WeightOnly",
"Int8DynamicActivationInt8Weight",
"Float8WeightOnly",
"Float8DynamicActivationFloat8Weight",
- **Int4WeightOnly**: 4-bit weight-only quantization
- **GemliteUIntXWeightOnly**: uintx gemlite quantization (default to 4 bit only for now)
- **Int8WeightOnly**: 8-bit weight-only quantization
- **Int8DynamicActivationInt8Weight**: 8-bit quantization for both weights and activations
- **Float8WeightOnly**: float8-bit weight-only quantization
- **Float8DynamicActivationFloat8Weight**: float8-bit quantization for both weights and activations
- **autoquant**: automatic quantization (uses the best quantization method for the model)
### Group Size
- Only applicable for int4_weight_only and int8_weight_only quantization
- Default value is 128
- Affects the granularity of quantization
## π How It Works
1. Downloads the original model
2. Applies TorchAO quantization with your selected settings
3. Uploads the quantized model to your HuggingFace account
## π Memory Benefits
- int4 quantization can reduce model size by up to 75%
- int8 quantization typically reduces size by about 50%
"""
)
# Keep existing click handler
quantize_button.click(
fn=quantize_and_save,
inputs=[model_name, quantization_type, group_size, quantized_model_name, public],
outputs=[output_link],
)
# Launch the app
demo.launch(share=True)
|