Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModel | |
import tempfile | |
from huggingface_hub import HfApi, snapshot_download | |
from huggingface_hub import list_models | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from packaging import version | |
import os | |
from torchao.quantization import ( | |
Int4WeightOnlyConfig, | |
Int8WeightOnlyConfig, | |
Int8DynamicActivationInt8WeightConfig, | |
Float8WeightOnlyConfig, | |
) | |
MAP_QUANT_TYPE_TO_NAME = { | |
"int4_weight_only": "int4wo", | |
"int8_weight_only": "int8wo", | |
"int8_dynamic_activation_int8_weight": "int8da8w", | |
"autoquant": "autoquant", | |
} | |
MAP_QUANT_TYPE_TO_CONFIG = { | |
"int4_weight_only": Int4WeightOnlyConfig, | |
"int8_weight_only": Int8WeightOnlyConfig, | |
"int8_dynamic_activation_int8_weight": Int8DynamicActivationInt8WeightConfig, | |
"float8_weight_only": Float8WeightOnlyConfig, | |
} | |
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str: | |
# ^ expect a gr.OAuthProfile object as input to get the user's profile | |
# if the user is not logged in, profile will be None | |
if profile is None: | |
return "Hello !" | |
return f"Hello {profile.name} !" | |
def check_model_exists( | |
oauth_token: gr.OAuthToken | None, | |
username, | |
quantization_type, | |
group_size, | |
model_name, | |
quantized_model_name, | |
): | |
"""Check if a model exists in the user's Hugging Face repository.""" | |
try: | |
models = list_models(author=username, token=oauth_token.token) | |
model_names = [model.id for model in models] | |
if quantized_model_name: | |
repo_name = f"{username}/{quantized_model_name}" | |
else: | |
if ( | |
quantization_type == "int4_weight_only" | |
or quantization_type == "int8_weight_only" | |
) and (group_size is not None): | |
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}" | |
else: | |
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}" | |
if repo_name in model_names: | |
return f"Model '{repo_name}' already exists in your repository." | |
else: | |
return None # Model does not exist | |
except Exception as e: | |
return f"Error checking model existence: {str(e)}" | |
def create_model_card(model_name, quantization_type, group_size): | |
# Try to download the original README | |
original_readme = "" | |
original_yaml_header = "" | |
try: | |
# Download the README.md file from the original model | |
model_path = snapshot_download( | |
repo_id=model_name, allow_patterns=["README.md"], repo_type="model" | |
) | |
readme_path = os.path.join(model_path, "README.md") | |
if os.path.exists(readme_path): | |
with open(readme_path, "r", encoding="utf-8") as f: | |
content = f.read() | |
if content.startswith("---"): | |
parts = content.split("---", 2) | |
if len(parts) >= 3: | |
original_yaml_header = parts[1] | |
original_readme = "---".join(parts[2:]) | |
else: | |
original_readme = content | |
else: | |
original_readme = content | |
except Exception as e: | |
print(f"Error reading original README: {str(e)}") | |
original_readme = "" | |
# Create new YAML header with base_model field | |
yaml_header = f"""--- | |
base_model: | |
- {model_name}""" | |
# Add any original YAML fields except base_model | |
if original_yaml_header: | |
in_base_model_section = False | |
found_tags = False | |
for line in original_yaml_header.strip().split("\n"): | |
# Skip if we're in a base_model section that continues to the next line | |
if in_base_model_section: | |
if ( | |
line.strip().startswith("-") | |
or not line.strip() | |
or line.startswith(" ") | |
): | |
continue | |
else: | |
in_base_model_section = False | |
# Check for base_model field | |
if line.strip().startswith("base_model:"): | |
in_base_model_section = True | |
# If base_model has inline value (like "base_model: model_name") | |
if ":" in line and len(line.split(":", 1)[1].strip()) > 0: | |
in_base_model_section = False | |
continue | |
# Check for tags field and add bnb-my-repo | |
if line.strip().startswith("tags:"): | |
found_tags = True | |
yaml_header += f"\n{line}" | |
yaml_header += "\n- torchao-my-repo" | |
continue | |
yaml_header += f"\n{line}" | |
# If tags field wasn't found, add it | |
if not found_tags: | |
yaml_header += "\ntags:" | |
yaml_header += "\n- torchao-my-repo" | |
# Complete the YAML header | |
yaml_header += "\n---" | |
# Create the quantization info section | |
quant_info = f""" | |
# {model_name} (Quantized) | |
## Description | |
This model is a quantized version of the original model [`{model_name}`](https://huggingface.co/{model_name}). | |
It's quantized using the TorchAO library using the [torchao-my-repo](https://huggingface.co/spaces/pytorch/torchao-my-repo) space. | |
## Quantization Details | |
- **Quantization Type**: {quantization_type} | |
- **Group Size**: {group_size} | |
""" | |
# Combine everything | |
model_card = yaml_header + quant_info | |
# Append original README content if available | |
if original_readme and not original_readme.isspace(): | |
model_card += "\n\n# π Original Model Information\n\n" + original_readme | |
return model_card | |
def quantize_model( | |
model_name, quantization_type, group_size=128, auth_token=None, username=None | |
): | |
print(f"Quantizing model: {quantization_type}") | |
if ( | |
quantization_type == "int4_weight_only" | |
or quantization_type == "int8_weight_only" | |
): | |
quantization_config = TorchAoConfig(quantization_type, group_size=group_size) | |
else: | |
quantization_config = TorchAoConfig(quantization_type) | |
model = AutoModel.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
quantization_config=quantization_config, | |
device_map="cpu", | |
use_auth_token=auth_token.token, | |
) | |
return model | |
def save_model( | |
model, | |
model_name, | |
quantization_type, | |
group_size=128, | |
username=None, | |
auth_token=None, | |
quantized_model_name=None, | |
): | |
print("Saving quantized model") | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# Load and save the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, use_auth_token=auth_token.token | |
) | |
tokenizer.save_pretrained(tmpdirname, use_auth_token=auth_token.token) | |
# Save the model | |
model.save_pretrained( | |
tmpdirname, safe_serialization=False, use_auth_token=auth_token.token | |
) | |
if quantized_model_name: | |
repo_name = f"{username}/{quantized_model_name}" | |
else: | |
if ( | |
quantization_type == "int4_weight_only" | |
or quantization_type == "int8_weight_only" | |
) and (group_size is not None): | |
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}" | |
else: | |
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}" | |
model_card = create_model_card(model_name, quantization_type, group_size) | |
with open(os.path.join(tmpdirname, "README.md"), "w") as f: | |
f.write(model_card) | |
# Push to Hub | |
api = HfApi(token=auth_token.token) | |
api.create_repo(repo_name, exist_ok=True) | |
api.upload_folder( | |
folder_path=tmpdirname, | |
repo_id=repo_name, | |
repo_type="model", | |
) | |
import io | |
from contextlib import redirect_stdout | |
import html | |
# Capture the model architecture string | |
f = io.StringIO() | |
with redirect_stdout(f): | |
print(model) | |
model_architecture_str = f.getvalue() | |
# Escape HTML characters and format with line breaks | |
model_architecture_str_html = html.escape(model_architecture_str).replace( | |
"\n", "<br/>" | |
) | |
# Format it for display in markdown with proper styling | |
model_architecture_info = f""" | |
<div class="model-architecture-container" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;"> | |
<h3 style="margin-top: 0; color: #2E7D32;">π Model Architecture</h3> | |
<div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;"> | |
<div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div> | |
</div> | |
</div> | |
""" | |
repo_link = f""" | |
<div class="repo-link" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;"> | |
<h3 style="margin-top: 0; color: #2E7D32;">π Repository Link</h3> | |
<p>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a></p> | |
</div> | |
""" | |
return ( | |
f"<h1>π Quantization Completed</h1><br/>{repo_link}{model_architecture_info}" | |
) | |
def quantize_and_save( | |
profile: gr.OAuthProfile | None, | |
oauth_token: gr.OAuthToken | None, | |
model_name, | |
quantization_type, | |
group_size, | |
quantized_model_name, | |
): | |
if oauth_token is None: | |
return """ | |
<div class="error-box"> | |
<h3>β Authentication Error</h3> | |
<p>Please sign in to your HuggingFace account to use the quantizer.</p> | |
</div> | |
""" | |
if not profile: | |
return """ | |
<div class="error-box"> | |
<h3>β Authentication Error</h3> | |
<p>Please sign in to your HuggingFace account to use the quantizer.</p> | |
</div> | |
""" | |
if not group_size.isdigit(): | |
if group_size != "": | |
return """ | |
<div class="error-box"> | |
<h3>β Group Size Error</h3> | |
<p>Group Size is a number for int4_weight_only and int8_weight_only or empty for int8_weight_only</p> | |
</div> | |
""" | |
if group_size and group_size.strip(): | |
group_size = int(group_size) | |
else: | |
group_size = None | |
exists_message = check_model_exists( | |
oauth_token, | |
profile.username, | |
quantization_type, | |
group_size, | |
model_name, | |
quantized_model_name, | |
) | |
if exists_message: | |
return f""" | |
<div class="warning-box"> | |
<h3>β οΈ Model Already Exists</h3> | |
<p>{exists_message}</p> | |
</div> | |
""" | |
# if quantization_type == "int4_weight_only" : | |
# return "int4_weight_only not supported on cpu" | |
try: | |
quantized_model = quantize_model( | |
model_name, quantization_type, group_size, oauth_token, profile.username | |
) | |
return save_model( | |
quantized_model, | |
model_name, | |
quantization_type, | |
group_size, | |
profile.username, | |
oauth_token, | |
quantized_model_name, | |
) | |
except Exception as e: | |
return str(e) | |
def get_model_size(model): | |
""" | |
Calculate the size of a PyTorch model in gigabytes. | |
Args: | |
model: PyTorch model | |
Returns: | |
float: Size of the model in GB | |
""" | |
# Get model state dict | |
state_dict = model.state_dict() | |
# Calculate total size in bytes | |
total_size = 0 | |
for param in state_dict.values(): | |
# Calculate bytes for each parameter | |
total_size += param.nelement() * param.element_size() | |
# Convert bytes to gigabytes (1 GB = 1,073,741,824 bytes) | |
size_gb = total_size / (1024**3) | |
size_gb = round(size_gb, 2) | |
return size_gb | |
# Add enhanced CSS styling | |
css = """ | |
/* Custom CSS for enhanced UI */ | |
.gradio-container {overflow-y: auto;} | |
/* Fix alignment for radio buttons and dropdowns */ | |
.gradio-radio, .gradio-dropdown { | |
display: flex !important; | |
align-items: center !important; | |
margin: 10px 0 !important; | |
} | |
/* Consistent spacing and alignment */ | |
.gradio-dropdown, .gradio-textbox, .gradio-radio { | |
margin-bottom: 12px !important; | |
width: 100% !important; | |
} | |
/* Quantize button styling with glow effect */ | |
button[variant="primary"] { | |
background: linear-gradient(135deg, #3B82F6, #10B981) !important; | |
color: white !important; | |
padding: 16px 32px !important; | |
font-size: 1.1rem !important; | |
font-weight: 700 !important; | |
border: none !important; | |
border-radius: 12px !important; | |
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important; | |
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important; | |
position: relative; | |
overflow: hidden; | |
animation: glow 1.5s ease-in-out infinite alternate; | |
} | |
button[variant="primary"]::before { | |
content: "β¨ "; | |
} | |
button[variant="primary"]:hover { | |
transform: translateY(-5px) scale(1.05) !important; | |
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important; | |
} | |
@keyframes glow { | |
from { | |
box-shadow: 0 0 10px rgba(59, 130, 246, 0.5); | |
} | |
to { | |
box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5); | |
} | |
} | |
/* Login button styling */ | |
#login-button { | |
background: linear-gradient(135deg, #3B82F6, #10B981) !important; | |
color: white !important; | |
font-weight: 700 !important; | |
border: none !important; | |
border-radius: 12px !important; | |
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important; | |
transition: all 0.3s ease !important; | |
max-width: 300px !important; | |
margin: 0 auto !important; | |
} | |
""" | |
# Update the main app layout | |
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo: | |
gr.Markdown( | |
""" | |
# π€ TorchAO Model Quantizer β¨ | |
Quantize your favorite Hugging Face models using TorchAO and save them to your profile! | |
<br/> | |
""" | |
) | |
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250) | |
m1 = gr.Markdown() | |
demo.load(hello, inputs=None, outputs=m1) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
model_name = HuggingfaceHubSearch( | |
label="π Hub Model ID", | |
placeholder="Search for model id on Huggingface", | |
search_type="model", | |
) | |
gr.Markdown("""### βοΈ Quantization Settings""") | |
with gr.Row(): | |
with gr.Column(): | |
quantization_type = gr.Dropdown( | |
info="Select the Quantization method", | |
choices=[ | |
"int4_weight_only", | |
"int8_weight_only", | |
"int8_dynamic_activation_int8_weight", | |
"autoquant", | |
], | |
value="int8_weight_only", | |
filterable=False, | |
show_label=False, | |
) | |
group_size = gr.Textbox( | |
info="Group Size (only for int4_weight_only and int8_weight_only)", | |
value="128", | |
interactive=True, | |
show_label=False, | |
) | |
quantized_model_name = gr.Textbox( | |
info="Custom name for your quantized model (optional)", | |
value="", | |
interactive=True, | |
show_label=False, | |
) | |
with gr.Column(): | |
quantize_button = gr.Button( | |
"π Quantize and Push to Hub", variant="primary" | |
) | |
output_link = gr.Markdown( | |
label="π Quantized Model Info", container=True, min_height=200 | |
) | |
# Add information section | |
with gr.Accordion("π About TorchAO Quantization", open=True): | |
gr.Markdown( | |
""" | |
## π Quantization Options | |
### Quantization Types | |
- **int4_weight_only**: 4-bit weight-only quantization | |
- **int8_weight_only**: 8-bit weight-only quantization | |
- **int8_dynamic_activation_int8_weight**: 8-bit quantization for both weights and activations | |
### Group Size | |
- Only applicable for int4_weight_only and int8_weight_only quantization | |
- Default value is 128 | |
- Affects the granularity of quantization | |
## π How It Works | |
1. Downloads the original model | |
2. Applies TorchAO quantization with your selected settings | |
3. Uploads the quantized model to your HuggingFace account | |
## π Memory Benefits | |
- int4_weight_only can reduce model size by up to 75% | |
- int8_weight_only typically reduces size by about 50% | |
""" | |
) | |
# Keep existing click handler | |
quantize_button.click( | |
fn=quantize_and_save, | |
inputs=[model_name, quantization_type, group_size, quantized_model_name], | |
outputs=[output_link], | |
) | |
# Launch the app | |
demo.launch(share=True) | |