File size: 14,919 Bytes
558908a
 
6294622
 
558908a
 
6294622
558908a
 
 
 
6294622
558908a
 
6294622
558908a
0fb9f4b
558908a
6294622
558908a
 
 
 
 
 
 
 
 
 
0fb9f4b
 
 
 
 
 
 
558908a
6294622
558908a
 
 
 
 
 
 
6294622
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6294622
558908a
 
 
 
 
 
 
 
 
 
 
 
6294622
558908a
6294622
558908a
6294622
558908a
 
 
 
 
 
6294622
 
 
 
 
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6294622
 
 
 
 
558908a
 
 
6294622
 
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
6294622
 
558908a
 
6294622
558908a
 
6294622
558908a
 
6294622
 
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6294622
558908a
6294622
 
558908a
6294622
 
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb9f4b
558908a
 
0fb9f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558908a
 
0fb9f4b
 
 
558908a
 
 
 
 
 
0fb9f4b
558908a
 
669503d
 
0fb9f4b
ffcad67
 
0fb9f4b
669503d
 
 
 
971ace8
558908a
 
 
 
 
223c854
0fb9f4b
558908a
0fb9f4b
 
558908a
 
 
 
0fb9f4b
558908a
 
 
 
0fb9f4b
558908a
 
0fb9f4b
558908a
 
 
0fb9f4b
558908a
223c854
0fb9f4b
 
558908a
0fb9f4b
 
558908a
 
 
 
0fb9f4b
558908a
 
 
 
0fb9f4b
558908a
 
 
 
 
 
 
 
0fb9f4b
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fb9f4b
558908a
0fb9f4b
558908a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6294622
558908a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os, json, random
import torch
import gradio as gr
import spaces
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from huggingface_hub import login, hf_hub_download
import pyreft
import pyvene as pv
from threading import Thread
from typing import Iterator
import torch.nn.functional as F

HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 128  # smaller default to save memory
MAX_INPUT_TOKEN_LENGTH = 4096

css = """
#alert-message textarea {
    background-color: #e8f4ff;
    border: 1px solid #cce5ff;
    color: #084298;
    font-size: 1.1em;
    padding: 12px;
    border-radius: 4px;
    font-weight: 500;
}

.concept-help {
    font-size: 0.9em;
    color: #666;
    margin-top: 4px;
    font-style: italic;
}
"""

def load_jsonl(jsonl_path):
    jsonl_data = []
    with open(jsonl_path, 'r') as f:
        for line in f:
            data = json.loads(line)
            jsonl_data.append(data)
    return jsonl_data

class Steer(pv.SourcelessIntervention):
    """Steer model via activation addition"""
    def __init__(self, **kwargs):
        super().__init__(**kwargs, keep_last_dim=True)
        self.proj = torch.nn.Linear(
                self.embed_dim, kwargs["latent_dim"], bias=False)
        self.subspace_generator = kwargs["subspace_generator"]
        
    def steer(self, base, source=None, subspaces=None):
        if subspaces["steer"]["subspace_gen_inputs"] is not None:
            # we call our subspace generator to generate the subspace on-the-fly.
            raw_steering_vec = self.subspace_generator(
                subspaces["steer"]["subspace_gen_inputs"]["input_ids"],
                subspaces["steer"]["subspace_gen_inputs"]["attention_mask"],
            )[0]
            steering_vec = torch.tensor(subspaces["steer"]["mag"]) * \
                raw_steering_vec.unsqueeze(dim=0)
            return base + steering_vec
        else:
            steering_vec = torch.tensor(subspaces["steer"]["mag"]) * \
                self.proj.weight[subspaces["steer"]["idx"]].unsqueeze(dim=0)
        return base + steering_vec
        
    def forward(self, base, source=None, subspaces=None):
        if subspaces == None:
            return base
        if subspaces["detect"] is not None:
            if subspaces["detect"]["subspace_gen_inputs"] is not None:
                # we call our subspace generator to generate the subspace on-the-fly.
                raw_detection_vec = self.subspace_generator(
                    subspaces["detect"]["subspace_gen_inputs"]["input_ids"],
                    subspaces["detect"]["subspace_gen_inputs"]["attention_mask"],
                )[0].unsqueeze(dim=-1)
            else:
                raw_detection_vec = self.proj.weight[subspaces["detect"]["idx"]].unsqueeze(dim=-1)
            print(base.shape)
            print(raw_detection_vec.shape)
            detection_latent = torch.matmul(base, raw_detection_vec.to(base.dtype)).squeeze(dim=-1) # (batch_size, seq, 1) -> (batch_size, seq)
            max_latent = torch.max(detection_latent, dim=-1).values[0] # (batch_size, seq) -> (batch_size)
            print("max_latent", max_latent)
            if max_latent > torch.tensor(subspaces["detect"]["mag"]):
                print("Detected!")
                return self.steer(base, source, subspaces)
            else:
                return base
        else:
            return self.steer(base, source, subspaces)
        
class RegressionWrapper(torch.nn.Module):
    def __init__(self, base_model, hidden_size, output_dim):
        super().__init__()
        self.base_model = base_model
        self.regression_head = torch.nn.Linear(hidden_size, output_dim)

    def forward(self, input_ids, attention_mask):
        outputs = self.base_model.model(
            input_ids=input_ids, 
            attention_mask=attention_mask,
            output_hidden_states=True,
            return_dict=True
        )
        last_hiddens = outputs.hidden_states[-1]
        last_token_representations = last_hiddens[:, -1]
        preds = self.regression_head(last_token_representations)
        preds = F.normalize(preds, p=2, dim=-1)
        return preds

# Check GPU
if not torch.cuda.is_available():
    print("Warning: Running on CPU, may be slow.")

# Load model & dictionary
model_id = "google/gemma-2-2b-it"
pv_model = None
tokenizer = None
concept_list = []
concept_id_map = {}
if torch.cuda.is_available():
    model = AutoModelForCausalLM.from_pretrained(
        model_id, device_map="cuda", torch_dtype=torch.bfloat16
    )
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    # Download dictionary
    weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt")
    meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl")
    params = torch.load(weight_path).cuda()
    md = load_jsonl(meta_path)

    concept_list = [item["concept"] for item in md]
    concept_id_map = {}

    # the reason to reindex is because there is one concept that is missing.
    concept_reindex = 0
    for item in md:
        concept_id_map[item["concept"]] = concept_reindex
        concept_reindex += 1

    # load subspace generator.
    base_tokenizer = AutoTokenizer.from_pretrained(
        f"google/gemma-2-2b", model_max_length=512)
    config = AutoConfig.from_pretrained("google/gemma-2-2b")
    base_model = AutoModelForCausalLM.from_config(config)
    
    subspace_generator_weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res-generator", filename="l20/weight.pt")
    hidden_size = base_model.config.hidden_size
    subspace_generator = RegressionWrapper(
        base_model, hidden_size, hidden_size).bfloat16().to("cuda")
    subspace_generator.load_state_dict(torch.load(subspace_generator_weight_path))
    print(f"Loading model from saved file {subspace_generator_weight_path}")
    _ = subspace_generator.eval()

    steer = Steer(
        embed_dim=params.shape[0], latent_dim=params.shape[1], 
        subspace_generator=subspace_generator)
    steer.proj.weight.data = params.float()

    pv_model = pv.IntervenableModel({
        "component": f"model.layers[20].output",
        "intervention": steer}, model=model)

terminators = [tokenizer.eos_token_id] if tokenizer else []

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    detection_list: list[dict],
    steering_list: list[dict],
    max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS,
) -> Iterator[str]:

    # limit to last 4 turns
    start_idx = max(0, len(chat_history) - 4)
    recent_history = chat_history[start_idx:]

    # build list of messages
    messages = []
    for rh in recent_history:
        messages.append({"role": rh["role"], "content": rh["content"]})
    messages.append({"role": "user", "content": message})

    input_ids = torch.tensor([tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=True)]).cuda()

    # trim if needed
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        yield "[Truncated prior text]\n"

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    print("detection_list: ", detection_list)
    print("steering_list: ", steering_list)
    generate_kwargs = {
        "base": {"input_ids": input_ids},
        "unit_locations": None,
        "max_new_tokens": max_new_tokens,
        "intervene_on_prompt": True,
        "subspaces": [
            {
                "detect": {
                    "idx": int(detection_list[0]["idx"]),
                    "mag": detection_list[0]["internal_mag"]*50,
                    "subspace_gen_inputs": base_tokenizer(detection_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \
                        if detection_list[0]["subspace_gen_text"] is not None else None
                } if detection_list else None,
                "steer": {
                    "idx": int(steering_list[0]["idx"]),
                    "mag": steering_list[0]["internal_mag"]*50,
                    "subspace_gen_inputs": base_tokenizer(steering_list[0]["subspace_gen_text"], return_tensors="pt").to("cuda") \
                        if steering_list[0]["subspace_gen_text"] is not None else None
                }
            }
        ] if steering_list else None, # if steering is not provided, we do not steer.
        "streamer": streamer,
        "do_sample": True
    }

    t = Thread(target=pv_model.generate, kwargs=generate_kwargs)
    t.start()

    partial_text = []
    for token_str in streamer:
        partial_text.append(token_str)
        yield "".join(partial_text)

def filter_concepts(search_text: str):
    if not search_text.strip():
        return concept_list[:500]
    filtered = [c for c in concept_list if search_text.lower() in c.lower()]
    return filtered[:500]

def add_concept_to_list(selected_concept, user_slider_val, current_list):
    if not selected_concept:
        return current_list

    selected_concept_text = None
    if selected_concept.startswith("[New] "):
        selected_concept_text = selected_concept[6:]
        idx = 0
    else:
        idx = concept_id_map[selected_concept]
    internal_mag = user_slider_val
    new_entry = {
        "text": selected_concept,
        "idx": idx,
        "display_mag": user_slider_val,
        "internal_mag": internal_mag,
        "subspace_gen_text": selected_concept_text
    }
    # Add to the beginning of the list
    current_list = [new_entry]
    return current_list

def update_dropdown_choices(search_text, is_detection=False):
    filtered = filter_concepts(search_text)
    if not filtered or len(filtered) == 0:
        alert_message = (
            "Good news! Based on the topic you provided, we will automatically generate a detector for you!"
        ) if is_detection else (
            "Good news! Based on the topic you provided, we will automatically generate a steering vector. Try it out by starting a chat!"
        )
        
        return gr.update(
            choices=[],
            value=None,
            interactive=True
        ), gr.Textbox(
            label="No matching topics found", 
            value=alert_message,
            lines=3,
            interactive=False,
            visible=True,
            elem_id="alert-message"
        )
    
    return gr.update(
        choices=filtered,
        value=filtered[0],
        interactive=True,
        visible=True
    ), gr.Textbox(visible=False)

with gr.Blocks(css=css, fill_height=True) as demo:
    selected_detection = gr.State([])
    selected_subspaces = gr.State([])
    
    with gr.Row(min_height=500, equal_height=True):
        # Left side: chat area
        with gr.Column(scale=7):
            gr.Markdown("""# Conditionally Steer AI Responses Based on Topics""")
            gr.Markdown("""This is an experimental chatbot that you can steer using topics you care about:

Step 1: Choose a topic (e.g., "Google") to detect       
Step 2: Choose a topic (e.g., "ethics") you want the model to discuss when the previous topic comes up

We intervene on Gemma-2-2B-it by adding steering vectors to the residual stream at layer 20.""")
            chat_interface = gr.ChatInterface(
                fn=generate,
                chatbot=gr.Chatbot(),
                textbox=gr.Textbox(placeholder="List some search engines with their pros and cons", container=True, scale=7, submit_btn=True),
                additional_inputs=[selected_detection, selected_subspaces],
            )
        
        # Right side: concept detection and steering
        with gr.Column(scale=3):
            gr.Markdown("""#### Step 1: Choose a topic the model needs to recognize.""")
            with gr.Group():                
                detect_search = gr.Textbox(
                    label="Search for topics to detect",
                    placeholder="Try: 'Google'",
                    lines=1,
                )
                detect_msg = gr.TextArea(visible=False)
                detect_dropdown = gr.Dropdown(
                    label="Choose a topic to detect (Click to see more!)",
                    interactive=True,
                    allow_custom_value=False,
                )
                detect_threshold = gr.Slider(
                    label="Detection sensitivity",
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.5,
                )

            gr.Markdown("---")

            gr.Markdown("""#### Step 2: Choose another topic the model needs to discuss when it detects the topic above.""")
            
            with gr.Group():                
                search_box = gr.Textbox(
                    label="Search topics to steer",
                    placeholder="Try: 'ethics'",
                    lines=1,
                )
                msg = gr.TextArea(visible=False)
                concept_dropdown = gr.Dropdown(
                    label="Choose a topic to steer the model (Click to see more!)",
                    interactive=True,
                    allow_custom_value=False,
                )
                concept_magnitude = gr.Slider(
                    label="Steering intensity",
                    minimum=-5,
                    maximum=5,
                    step=0.1,
                    value=3.5,
                )

    # Wire up events for detection
    detect_search.input(
        lambda x: update_dropdown_choices(x, is_detection=True),
        [detect_search],
        [detect_dropdown, detect_msg]
    ).then(
        add_concept_to_list,
        [detect_dropdown, detect_threshold, selected_detection],
        [selected_detection]
    )

    detect_dropdown.select(
        add_concept_to_list,
        [detect_dropdown, detect_threshold, selected_detection],
        [selected_detection]
    )

    detect_threshold.input(
        add_concept_to_list,
        [detect_dropdown, detect_threshold, selected_detection],
        [selected_detection]
    )

    # Wire up events for steering
    search_box.input(
        lambda x: update_dropdown_choices(x, is_detection=False),
        [search_box],
        [concept_dropdown, msg]
    ).then(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )

    concept_dropdown.select(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )
    
    concept_magnitude.input(
        add_concept_to_list,
        [concept_dropdown, concept_magnitude, selected_subspaces],
        [selected_subspaces]
    )

    demo.launch(share=True, height=1000)