Spaces:
Running
on
Zero
Running
on
Zero
frankaging
commited on
Commit
·
7497e24
1
Parent(s):
f860e61
o1 impl
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import os, json
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
@@ -44,13 +44,14 @@ class Steer(pv.SourcelessIntervention):
|
|
44 |
self.proj = torch.nn.Linear(self.embed_dim, kwargs["latent_dim"], bias=False)
|
45 |
|
46 |
def forward(self, base, source=None, subspaces=None):
|
47 |
-
# subspaces is a list of dicts:
|
|
|
48 |
steer_vec = base
|
49 |
if subspaces is not None:
|
50 |
for sp in subspaces:
|
51 |
idx = sp["idx"]
|
52 |
-
|
53 |
-
|
54 |
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
|
55 |
steer_vec = steer_vec + steering_vec
|
56 |
return steer_vec
|
@@ -107,39 +108,30 @@ def generate(
|
|
107 |
recent_history = chat_history[start_idx:]
|
108 |
|
109 |
# Build a list of messages
|
110 |
-
# each tuple is (user_message,
|
111 |
messages = []
|
112 |
-
for user_msg,
|
113 |
messages.append({"role": "user", "content": user_msg})
|
114 |
-
messages.append({"role": "
|
115 |
|
116 |
# Now append the new user message
|
117 |
messages.append({"role": "user", "content": message})
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
messages,
|
122 |
-
tokenize=True,
|
123 |
-
add_generation_prompt=True # appends a final "Assistant:" for the model to continue
|
124 |
-
)
|
125 |
-
|
126 |
-
# Retrieve input_ids and mask
|
127 |
-
input_ids = torch.tensor([prompt["input_ids"]]).cuda()
|
128 |
-
attention_mask = torch.tensor([prompt["attention_mask"]]).cuda()
|
129 |
|
130 |
# Possibly trim if over max length
|
131 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
132 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
133 |
-
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
|
134 |
yield "\n[Warning: Truncated conversation exceeds max allowed input tokens]\n"
|
135 |
|
136 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
137 |
generate_kwargs = {
|
138 |
-
"base": {"input_ids": input_ids
|
139 |
"unit_locations": None,
|
140 |
"max_new_tokens": max_new_tokens,
|
141 |
"intervene_on_prompt": True,
|
142 |
-
"subspaces": subspaces_list,
|
143 |
"streamer": streamer,
|
144 |
"eos_token_id": terminators,
|
145 |
"early_stopping": True,
|
@@ -159,32 +151,62 @@ def generate(
|
|
159 |
# UI Callbacks
|
160 |
# --------------
|
161 |
def filter_concepts(search_text: str):
|
|
|
162 |
if not search_text.strip():
|
163 |
return concept_list[:500]
|
164 |
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
|
165 |
return filtered[:500]
|
166 |
|
167 |
-
def add_concept_to_list(selected_concept,
|
168 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
169 |
if not selected_concept:
|
170 |
-
return current_list,
|
|
|
171 |
concept_idx = concept_id_map[selected_concept]
|
172 |
-
new_entry = {"idx": concept_idx, "mag": magnitude}
|
173 |
-
updated_list = current_list + [new_entry]
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
def update_dropdown_choices(search_text):
|
190 |
filtered = filter_concepts(search_text)
|
@@ -198,81 +220,96 @@ with gr.Blocks(css="style.css") as demo:
|
|
198 |
gr.Markdown(DESCRIPTION)
|
199 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
200 |
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
with gr.Row():
|
204 |
-
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
search_box = gr.Textbox(
|
207 |
label="Search concepts",
|
208 |
placeholder="Type text to filter concepts (e.g. 'sports')"
|
209 |
)
|
210 |
concept_dropdown = gr.Dropdown(
|
211 |
label="Filtered Concepts",
|
212 |
-
choices=[],
|
213 |
multiselect=False
|
214 |
)
|
215 |
concept_magnitude = gr.Slider(
|
216 |
-
label="Magnitude",
|
217 |
-
minimum=-
|
218 |
-
maximum=
|
219 |
step=1.0,
|
220 |
-
value=
|
221 |
)
|
222 |
add_button = gr.Button("Add Concept")
|
223 |
|
224 |
-
#
|
225 |
-
remove_dropdown = gr.Dropdown(
|
226 |
-
label="Remove from active list",
|
227 |
-
choices=[],
|
228 |
-
multiselect=False
|
229 |
-
)
|
230 |
-
remove_button = gr.Button("Remove Selected")
|
231 |
-
|
232 |
-
with gr.Column():
|
233 |
-
# Display currently active subspaces
|
234 |
active_subspaces_table = gr.Dataframe(
|
235 |
-
headers=["
|
236 |
-
datatype=["
|
237 |
interactive=False,
|
238 |
-
|
|
|
|
|
239 |
)
|
240 |
|
241 |
-
|
242 |
-
chat_interface = gr.ChatInterface(
|
243 |
-
fn=generate,
|
244 |
-
additional_inputs=[
|
245 |
-
gr.Slider(
|
246 |
-
label="Max new tokens",
|
247 |
-
minimum=1,
|
248 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
249 |
-
step=1,
|
250 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
251 |
-
),
|
252 |
-
selected_subspaces
|
253 |
-
],
|
254 |
-
title="Model Steering with ReFT-r1 (16K concepts)",
|
255 |
-
)
|
256 |
|
257 |
gr.Markdown(LICENSE)
|
258 |
|
259 |
# Wire up events
|
|
|
260 |
search_box.change(
|
261 |
fn=update_dropdown_choices,
|
262 |
inputs=[search_box],
|
263 |
outputs=[concept_dropdown]
|
264 |
)
|
265 |
|
|
|
266 |
add_button.click(
|
267 |
fn=add_concept_to_list,
|
268 |
inputs=[concept_dropdown, concept_magnitude, selected_subspaces],
|
269 |
-
outputs=[selected_subspaces, active_subspaces_table
|
270 |
)
|
271 |
|
|
|
272 |
remove_button.click(
|
273 |
-
fn=
|
274 |
-
inputs=[
|
275 |
-
outputs=[selected_subspaces, active_subspaces_table
|
276 |
)
|
277 |
|
278 |
demo.queue(max_size=20).launch()
|
|
|
1 |
+
import os, json, random
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
|
|
44 |
self.proj = torch.nn.Linear(self.embed_dim, kwargs["latent_dim"], bias=False)
|
45 |
|
46 |
def forward(self, base, source=None, subspaces=None):
|
47 |
+
# subspaces is a list of dicts:
|
48 |
+
# each has {"idx": int, "internal_mag": float, ...}
|
49 |
steer_vec = base
|
50 |
if subspaces is not None:
|
51 |
for sp in subspaces:
|
52 |
idx = sp["idx"]
|
53 |
+
# Use the internal magnitude for actual steering
|
54 |
+
mag = sp["internal_mag"]
|
55 |
steering_vec = mag * self.proj.weight[idx].unsqueeze(dim=0)
|
56 |
steer_vec = steer_vec + steering_vec
|
57 |
return steer_vec
|
|
|
108 |
recent_history = chat_history[start_idx:]
|
109 |
|
110 |
# Build a list of messages
|
111 |
+
# each tuple is (user_message, model_message)
|
112 |
messages = []
|
113 |
+
for user_msg, model_msg in recent_history:
|
114 |
messages.append({"role": "user", "content": user_msg})
|
115 |
+
messages.append({"role": "model", "content": model_msg})
|
116 |
|
117 |
# Now append the new user message
|
118 |
messages.append({"role": "user", "content": message})
|
119 |
|
120 |
+
input_ids = torch.tensor([tokenizer.apply_chat_template(
|
121 |
+
messages, tokenize=True, add_generation_prompt=True)]).cuda()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Possibly trim if over max length
|
124 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
125 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
126 |
yield "\n[Warning: Truncated conversation exceeds max allowed input tokens]\n"
|
127 |
|
128 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
129 |
generate_kwargs = {
|
130 |
+
"base": {"input_ids": input_ids},
|
131 |
"unit_locations": None,
|
132 |
"max_new_tokens": max_new_tokens,
|
133 |
"intervene_on_prompt": True,
|
134 |
+
"subspaces": subspaces_list, # pass entire structure, using "internal_mag"
|
135 |
"streamer": streamer,
|
136 |
"eos_token_id": terminators,
|
137 |
"early_stopping": True,
|
|
|
151 |
# UI Callbacks
|
152 |
# --------------
|
153 |
def filter_concepts(search_text: str):
|
154 |
+
"""Return the first ~500 concepts that match (case-insensitive)."""
|
155 |
if not search_text.strip():
|
156 |
return concept_list[:500]
|
157 |
filtered = [c for c in concept_list if search_text.lower() in c.lower()]
|
158 |
return filtered[:500]
|
159 |
|
160 |
+
def add_concept_to_list(selected_concept, user_slider_val, current_list):
|
161 |
+
"""
|
162 |
+
When 'Add Concept' is clicked, add the chosen concept with the
|
163 |
+
scaled magnitude to the subspaces list.
|
164 |
+
|
165 |
+
user_slider_val is from [-5..5], we multiply by 50 internally.
|
166 |
+
"""
|
167 |
if not selected_concept:
|
168 |
+
return current_list, _build_table_data(current_list)
|
169 |
+
|
170 |
concept_idx = concept_id_map[selected_concept]
|
|
|
|
|
171 |
|
172 |
+
# Multiply slider by 50 internally
|
173 |
+
internal_mag = user_slider_val * 50
|
174 |
+
|
175 |
+
# We'll store both displayed magnitude (for the table) and the internal
|
176 |
+
# magnitude for the model. Also store 'text' for easy display.
|
177 |
+
new_entry = {
|
178 |
+
"text": selected_concept,
|
179 |
+
"idx": concept_idx,
|
180 |
+
"display_mag": user_slider_val,
|
181 |
+
"internal_mag": internal_mag,
|
182 |
+
}
|
183 |
|
184 |
+
# Avoid duplicates if you prefer:
|
185 |
+
# e.g. check if concept_idx already in current_list. We'll skip that for now.
|
186 |
+
updated_list = current_list + [new_entry]
|
187 |
+
return updated_list, _build_table_data(updated_list)
|
188 |
+
|
189 |
+
def remove_selected_row(selected_rows, current_list):
|
190 |
+
"""
|
191 |
+
Removes the row selected from the table.
|
192 |
+
selected_rows is a list of selected row indices,
|
193 |
+
e.g. [1] meaning row with index 1 is selected.
|
194 |
+
"""
|
195 |
+
if not selected_rows:
|
196 |
+
return current_list, _build_table_data(current_list)
|
197 |
+
row_idx = selected_rows[0] # single selection
|
198 |
+
# Safely remove if in range
|
199 |
+
if 0 <= row_idx < len(current_list):
|
200 |
+
updated_list = current_list[:row_idx] + current_list[row_idx+1:]
|
201 |
+
return updated_list, _build_table_data(updated_list)
|
202 |
+
else:
|
203 |
+
return current_list, _build_table_data(current_list)
|
204 |
+
|
205 |
+
def _build_table_data(subspaces):
|
206 |
+
"""
|
207 |
+
Build a list of [concept_text, display_mag] to show in the table.
|
208 |
+
"""
|
209 |
+
return [[x["text"], x["display_mag"]] for x in subspaces]
|
210 |
|
211 |
def update_dropdown_choices(search_text):
|
212 |
filtered = filter_concepts(search_text)
|
|
|
220 |
gr.Markdown(DESCRIPTION)
|
221 |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
222 |
|
223 |
+
# If GPU is available, define a random default concept:
|
224 |
+
default_subspaces = []
|
225 |
+
if torch.cuda.is_available() and len(concept_list) > 0:
|
226 |
+
default_index = random.randint(0, len(concept_list) - 1)
|
227 |
+
default_concept = concept_list[default_index]
|
228 |
+
default_concept_idx = concept_id_map[default_concept]
|
229 |
+
# default slider is 3 => 3*50=150 internally
|
230 |
+
default_subspaces = [{
|
231 |
+
"text": default_concept,
|
232 |
+
"idx": default_concept_idx,
|
233 |
+
"display_mag": 3, # what user sees
|
234 |
+
"internal_mag": 150.0, # actual scaling
|
235 |
+
}]
|
236 |
+
|
237 |
+
# Keep state of subspaces
|
238 |
+
selected_subspaces = gr.State(default_subspaces)
|
239 |
|
240 |
with gr.Row():
|
241 |
+
# Left column: Chat
|
242 |
+
with gr.Column(scale=5):
|
243 |
+
chat_interface = gr.ChatInterface(
|
244 |
+
fn=generate,
|
245 |
+
additional_inputs=[
|
246 |
+
gr.Slider(
|
247 |
+
label="Max new tokens",
|
248 |
+
minimum=1,
|
249 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
250 |
+
step=1,
|
251 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
252 |
+
),
|
253 |
+
selected_subspaces # pass the entire subspaces list
|
254 |
+
],
|
255 |
+
title="Model Steering with ReFT-r1 (16K concepts)",
|
256 |
+
)
|
257 |
+
|
258 |
+
# Right column: concept searching, adding, table display, removal
|
259 |
+
with gr.Column(scale=4):
|
260 |
+
gr.Markdown("## Steering Concepts")
|
261 |
search_box = gr.Textbox(
|
262 |
label="Search concepts",
|
263 |
placeholder="Type text to filter concepts (e.g. 'sports')"
|
264 |
)
|
265 |
concept_dropdown = gr.Dropdown(
|
266 |
label="Filtered Concepts",
|
267 |
+
choices=[], # dynamically populated
|
268 |
multiselect=False
|
269 |
)
|
270 |
concept_magnitude = gr.Slider(
|
271 |
+
label="Scaled Magnitude (multiplies by 50 internally)",
|
272 |
+
minimum=-5,
|
273 |
+
maximum=5,
|
274 |
step=1.0,
|
275 |
+
value=3
|
276 |
)
|
277 |
add_button = gr.Button("Add Concept")
|
278 |
|
279 |
+
# Current subspaces table
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
active_subspaces_table = gr.Dataframe(
|
281 |
+
headers=["Concept", "Magnitude (scaled)"],
|
282 |
+
datatype=["str", "number"],
|
283 |
interactive=False,
|
284 |
+
row_selectable="single",
|
285 |
+
label="Active Concept Subspaces",
|
286 |
+
value=_build_table_data(default_subspaces)
|
287 |
)
|
288 |
|
289 |
+
remove_button = gr.Button("Remove Selected Row")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
gr.Markdown(LICENSE)
|
292 |
|
293 |
# Wire up events
|
294 |
+
# Whenever user types in search_box, update concept_dropdown
|
295 |
search_box.change(
|
296 |
fn=update_dropdown_choices,
|
297 |
inputs=[search_box],
|
298 |
outputs=[concept_dropdown]
|
299 |
)
|
300 |
|
301 |
+
# Add concept
|
302 |
add_button.click(
|
303 |
fn=add_concept_to_list,
|
304 |
inputs=[concept_dropdown, concept_magnitude, selected_subspaces],
|
305 |
+
outputs=[selected_subspaces, active_subspaces_table],
|
306 |
)
|
307 |
|
308 |
+
# Remove selected row from table
|
309 |
remove_button.click(
|
310 |
+
fn=remove_selected_row,
|
311 |
+
inputs=[active_subspaces_table, selected_subspaces],
|
312 |
+
outputs=[selected_subspaces, active_subspaces_table],
|
313 |
)
|
314 |
|
315 |
demo.queue(max_size=20).launch()
|