reft_emoji_chat / app.py
frankaging
fix name
6e20b09
raw
history blame
4.51 kB
# login as a privileged user.
import os
HF_TOKEN = os.environ.get("HF_TOKEN")
from huggingface_hub import login
login(token=HF_TOKEN)
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from pyreft import ReftModel
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# ReFT-Emoji-Chat
"""
LICENSE = """
<p/>
---
Our emoji-chat with ReFT. It is trained with 10 training examples under 50 seconds. You can train your own ReFT agent and share it on HuggingFace by following this [tutorial](https://github.com/stanfordnlp/pyreft/tree/main/examples/gradio/train_and_share.ipynb)!
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf" # not gated version.
model = AutoModelForCausalLM.from_pretrained(
model_id, device_map="cuda", torch_dtype=torch.bfloat16
)
reft_model = ReftModel.load("pyvene/reft_emoji_chat", model, from_huggingface_hub=True)
reft_model.set_device("cuda")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = True
prompt_no_input_template = """<s>[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
%s [/INST]
"""
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
) -> Iterator[str]:
# tokenize and prepare the input
prompt = prompt_no_input_template % message
prompt = tokenizer(prompt, return_tensors="pt").to(model.device)
input_ids = prompt["input_ids"]
attention_mask = prompt["attention_mask"]
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
attention_mask = attention_mask[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
base_unit_location = input_ids.shape[-1] - 1 # last position
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"base": {"input_ids": input_ids, "attention_mask": attention_mask},
"unit_locations": {"sources->base": (None, [[[base_unit_location]]])},
"max_new_tokens": max_new_tokens,
"intervene_on_prompt": True,
"streamer": streamer,
"eos_token_id": tokenizer.eos_token_id,
"early_stopping": True,
"do_sample": False
}
t = Thread(target=reft_model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
)
],
stop_btn=None,
examples=[
["What's 2+2?"],
["Why is the sky blue?"],
["What's Apple's stock price?"],
["Plan a family road trip to Austin"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()