Spaces:
Runtime error
Runtime error
File size: 5,118 Bytes
e63f3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import argparse
import torch
from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from q_align.conversation import conv_templates, SeparatorStyle
from q_align.model.builder import load_pretrained_model
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer
import json
from tqdm import tqdm
from collections import defaultdict
import os
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
import torch
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def load_image(image_file):
if image_file.startswith('http://') or image_file.startswith('https://'):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
return image
def main(args):
# Model
disable_torch_init()
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
import json
image_path = "playground/data/"
json_prefix = "playground/data/labels/mos_simple/"
jsons = [
json_prefix + "test_flive.json",
json_prefix + "combined/kadid_ref.json",
json_prefix + "combined/livec.json",
json_prefix + "test_koniq.json",
json_prefix + "test_spaq.json",
json_prefix + "combined/agi.json",
json_prefix + "combined/kadid.json",
]
os.makedirs(f"results/{args.model_path}/", exist_ok=True)
conv_mode = "mplug_owl2"
inp = "How would you rate the quality of this image?"
conv = conv_templates[conv_mode].copy()
inp = inp + "\n" + DEFAULT_IMAGE_TOKEN
conv.append_message(conv.roles[0], inp)
image = None
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt() + " The quality of the image is"
toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate", "decent", "average", "medium", "acceptable"]
print(toks)
ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
print(ids_)
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
for json_ in jsons:
with open(json_) as f:
iqadata = json.load(f)
image_tensors = []
batch_data = []
for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
#print(f"Evaluating image {i}")
#print(prompt)
filename = llddata["image"]
llddata["logits"] = defaultdict(float)
image = load_image(image_path + filename)
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda()
image_tensors.append(image_tensor)
batch_data.append(llddata)
if i % 8 == 7 or i == len(iqadata) - 1:
with torch.inference_mode():
output_logits = model(input_ids.repeat(len(image_tensors), 1),
images=torch.cat(image_tensors, 0))["logits"][:,-1]
for j, xllddata in enumerate(batch_data):
for tok, id_ in zip(toks, ids_):
xllddata["logits"][tok] += output_logits[j,id_].item()
# print(llddata)
json_ = json_.replace("combined/", "combined-")
# print(f"results/mix-mplug-owl-2-boost_iqa_wu_v2/{json_.split('/')[-1]}")
with open(f"results/{args.model_path}/{json_.split('/')[-1]}", "a") as wf:
json.dump(xllddata, wf)
image_tensors = []
batch_data = []
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="q-future/q-align-koniq-spaq-v0")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
args = parser.parse_args()
main(args) |