File size: 6,323 Bytes
e63f3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import argparse
import torch

from q_align.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from q_align.conversation import conv_templates, SeparatorStyle
from q_align.model.builder import load_pretrained_model
from q_align.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer

from scipy.stats import spearmanr, pearsonr


import json
from tqdm import tqdm
from collections import defaultdict

import os

def wa5(logits):
    import numpy as np
    logprobs = np.array([logits["excellent"], logits["good"], logits["fair"], logits["poor"], logits["bad"]])
    probs = np.exp(logprobs) / np.sum(np.exp(logprobs))
    return np.inner(probs, np.array([1,0.75,0.5,0.25,0.]))




def disable_torch_init():
    """
    Disable the redundant torch default initialization to accelerate model creation.
    """
    import torch
    setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
    setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)


def load_image(image_file):
    if image_file.startswith('http://') or image_file.startswith('https://'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


def main(args):
    # Model
    disable_torch_init()

    model_name = get_model_name_from_path(args.model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
    
    
    import json

    
    image_path = "playground/data/"
                  

    json_prefix = "playground/data/test_jsons/"
    jsons = [
        json_prefix + "test_ava.json",
    ]

    os.makedirs(f"results/{args.model_path}/", exist_ok=True)


    conv_mode = "mplug_owl2"
    
    inp = "How would you rate the aesthetics of this image?"
        
    conv = conv_templates[conv_mode].copy()
    inp = DEFAULT_IMAGE_TOKEN + inp
    conv.append_message(conv.roles[0], inp)
    image = None
        
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt() + " The aesthetics of the image is"
    
    toks = ["good", "poor", "high", "fair", "low", "excellent", "bad", "fine", "moderate",  "decent", "average", "medium", "acceptable"]
    print(toks)
    ids_ = [id_[1] for id_ in tokenizer(toks)["input_ids"]]
    print(ids_)

    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(args.device)
    
    for json_ in jsons:
        with open(json_) as f:
            iqadata = json.load(f)  

            image_tensors = []
            batch_data = []
            prs, gts = [], []
            for i, llddata in enumerate(tqdm(iqadata, desc="Evaluating [{}]".format(json_.split("/")[-1]))):
                filename = llddata["image"]
                llddata["logits"] = defaultdict(float)
                
                
                
                image = load_image(image_path + filename)
                def expand2square(pil_img, background_color):
                        width, height = pil_img.size
                        if width == height:
                            return pil_img
                        elif width > height:
                            result = Image.new(pil_img.mode, (width, width), background_color)
                            result.paste(pil_img, (0, (width - height) // 2))
                            return result
                        else:
                            result = Image.new(pil_img.mode, (height, height), background_color)
                            result.paste(pil_img, ((height - width) // 2, 0))
                            return result
                image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
                image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().to(args.device)

                image_tensors.append(image_tensor)
                batch_data.append(llddata)

                if i % 8 == 7 or i == len(iqadata) - 1:                     
                    with torch.inference_mode():
                        output_logits = model(input_ids.repeat(len(image_tensors), 1),
                            images=torch.cat(image_tensors, 0))["logits"][:,-1]
    
                    for j, xllddata in enumerate(batch_data):
                        for tok, id_ in zip(toks, ids_):
                            xllddata["logits"][tok] += output_logits[j,id_].item()
                        xllddata["score"] = wa5(xllddata["logits"])
                        # print(llddata)
                        prs.append(xllddata["score"])
                        gts.append(xllddata["gt_score"])
                        json_ = json_.replace("combined/", "combined-")
                        with open(f"results/{args.model_path}/{json_.split('/')[-1]}", "a") as wf:
                            json.dump(xllddata, wf)

                    image_tensors = []
                    batch_data = []
                
                #if i > 0 and i % 200 == 0:
                #    print(spearmanr(prs,gts)[0], pearsonr(prs,gts)[0])
            print("Spearmanr", spearmanr(prs,gts)[0], "Pearson", pearsonr(prs,gts)[0])


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-path", type=str, default="q-future/one-align")
    parser.add_argument("--model-base", type=str, default=None)
    parser.add_argument("--device", type=str, default="cuda:0")
    parser.add_argument("--conv-mode", type=str, default=None)
    parser.add_argument("--temperature", type=float, default=0.2)
    parser.add_argument("--max-new-tokens", type=int, default=512)
    parser.add_argument("--load-8bit", action="store_true")
    parser.add_argument("--load-4bit", action="store_true")
    parser.add_argument("--debug", action="store_true")
    parser.add_argument("--image-aspect-ratio", type=str, default='pad')
    args = parser.parse_args()
    main(args)