File size: 12,964 Bytes
0cbb679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
import xgboost as xgb
import gradio as gr
from scapy.all import rdpcap
from collections import defaultdict
import os

def transform_new_input(new_input):
    #Scale input features based on predetermined min/max values
    scaled_min = np.array([
        1.0, 10.0, 856.0, 5775.0, 42.0, 26.0, 0.0, 278.0, 4.0, 1.0, 
        -630355.0, 4.0, 50.0
    ])
    
    scaled_max = np.array([
        4.0, 352752.0, 271591638.0, 239241314.0, 421552.0, 3317.0, 
        6302708.0, 6302708.0, 5.0, 5.0, 1746749.0, 608.0, 1012128.0
    ])
    
    new_input = np.array(new_input)
    scaled_input = (new_input - scaled_min) / (scaled_max - scaled_min)
    return scaled_input

class PcapProcessor:
    def __init__(self, pcap_file):
        #Initialize PCAP processor with file path
        self.packets = rdpcap(pcap_file)
        self.start_time = None
        self.port_stats = defaultdict(lambda: {
            'rx_packets': 0,
            'rx_bytes': 0,
            'tx_packets': 0,
            'tx_bytes': 0,
            'first_seen': None,
            'last_seen': None,
            'active_flows': set(),
            'packets_matched': 0
        })
        
    def process_packets(self, window_size=60):
        #Process all packets and extract features
        if not self.packets:
            return []
            
        self.start_time = float(self.packets[0].time)
        
        # Process each packet
        for packet in self.packets:
            current_time = float(packet.time)
            
            if 'TCP' in packet or 'UDP' in packet:
                try:
                    src_port = packet.sport
                    dst_port = packet.dport
                    pkt_size = len(packet)
                    
                    # Track flow information
                    flow_tuple = (packet['IP'].src, packet['IP'].dst, 
                                src_port, dst_port)
                    
                    # Update port statistics
                    self._update_port_stats(src_port, pkt_size, True, 
                                          current_time, flow_tuple)
                    self._update_port_stats(dst_port, pkt_size, False, 
                                          current_time, flow_tuple)
                except Exception as e:
                    print(f"Error processing packet {packet}: {str(e)}")
                    continue
        
        # Extract features for each port
        features_list = []
        for port, stats in self.port_stats.items():
            if stats['first_seen'] is not None:
                features = self._extract_port_features(port, stats, window_size)
                features_list.append(features)
        
        return features_list
    
    def _update_port_stats(self, port, pkt_size, is_source, current_time, 
                          flow_tuple):
        #Update statistics for a given port
        stats = self.port_stats[port]
        
        if stats['first_seen'] is None:
            stats['first_seen'] = current_time
        
        stats['last_seen'] = current_time
        
        if is_source:
            stats['tx_packets'] += 1
            stats['tx_bytes'] += pkt_size
        else:
            stats['rx_packets'] += 1
            stats['rx_bytes'] += pkt_size
        
        stats['active_flows'].add(flow_tuple)
        stats['packets_matched'] += 1
    
    def _extract_port_features(self, port, stats, window_size):
        #Extract the 13 features needed for the IDS model
        port_alive_duration = stats['last_seen'] - stats['first_seen']
        delta_alive_duration = min(port_alive_duration, window_size)
        
        # Calculate rates and loads
        total_load = (stats['rx_bytes'] + stats['tx_bytes']) / \
                    max(port_alive_duration, 1)
        
        features = [
            min(port % 4 + 1, 4),  # Port Number (1-4)
            stats['rx_packets'],    # Received Packets
            stats['rx_bytes'],      # Received Bytes
            stats['tx_bytes'],      # Sent Bytes
            stats['tx_packets'],    # Sent Packets
            port_alive_duration,    # Port alive Duration
            stats['rx_bytes'],      # Delta Received Bytes
            stats['tx_bytes'],      # Delta Sent Bytes
            min(delta_alive_duration, 5),  # Delta Port alive Duration
            min((port % 5) + 1, 5), # Connection Point
            total_load,             # Total Load/Rate
            len(stats['active_flows']), # Active Flow Entries
            stats['packets_matched']    # Packets Matched
        ]
        
        return features

def process_pcap_for_ids(pcap_file):
    """Process PCAP file and return features for IDS model"""
    processor = PcapProcessor(pcap_file)
    features = processor.process_packets()
    return features

def predict_from_features(features, model):
    """Make prediction from extracted features"""
    # Scale features
    scaled_features = transform_new_input(features)
    features_matrix = xgb.DMatrix(scaled_features.reshape(1, -1))
    
    # Make prediction and get probability distribution
    raw_prediction = model.predict(features_matrix)
    probabilities = raw_prediction[0]  # Get probability distribution
    prediction = np.argmax(probabilities)
    
    # Add threshold for normal traffic
    # If highest probability is for normal (class 0) and exceeds threshold
    if prediction == 0 and probabilities[0] > 0.6:  # 60% confidence threshold
        return get_prediction_message(0)
    # If no class has high confidence, consider it normal
    elif np.max(probabilities) < 0.4:  # Low confidence threshold
        return get_prediction_message(0)
    else:
        return get_prediction_message(prediction)

def get_prediction_message(prediction):
    """Get formatted prediction message with confidence levels"""
    messages = {
        0: ("NORMAL TRAFFIC - No indication of attack.", 
            "Traffic patterns appear to be within normal parameters."),
        1: ("ALERT: Potential BLACKHOLE attack detected.", 
            "Information: BLACKHOLE attacks occur when a router maliciously drops "
            "packets it should forward. Investigate affected routes and traffic patterns."),
        2: ("ALERT: Potential TCP-SYN flood attack detected.", 
            "Information: TCP-SYN flood is a DDoS attack exhausting server resources "
            "with half-open connections. Check connection states and implement SYN cookies."),
        3: ("ALERT: PORTSCAN activity detected.", 
            "Information: Port scanning detected - systematic probing of system ports. "
            "Review firewall rules and implement connection rate limiting."),
        4: ("ALERT: Potential DIVERSION attack detected.", 
            "Information: Traffic diversion detected. Verify routing integrity and "
            "check for signs of traffic manipulation or social engineering attempts.")
    }
    return messages.get(prediction, ("Unknown Traffic Pattern", "Additional analysis required."))

def process_pcap_input(pcap_file):
    """Process PCAP file input"""
    try:
        model = xgb.Booster()
        model.load_model("m3_xg_boost.model")
        features_list = process_pcap_for_ids(pcap_file.name)
        if not features_list:
            return "No valid network traffic found in PCAP file."
        
        results = []
        for idx, features in enumerate(features_list):
            result_msg, result_info = predict_from_features(features, model)
            results.append(f"Traffic Pattern {idx + 1}:\n{result_msg}\n{result_info}\n")
        
        return "\n".join(results)
    except Exception as e:
        return f"Error processing PCAP file: {str(e)}"

def process_manual_input(port_num, rx_packets, rx_bytes, tx_bytes, tx_packets, 
                        port_duration, delta_rx_bytes, delta_tx_bytes, 
                        delta_duration, conn_point, total_load, active_flows, 
                        packets_matched):
    #Process manual input values
    try:
        model = xgb.Booster()
        model.load_model("m3_xg_boost.model")
        features = [
            port_num, rx_packets, rx_bytes, tx_bytes, tx_packets,
            port_duration, delta_rx_bytes, delta_tx_bytes, delta_duration,
            conn_point, total_load, active_flows, packets_matched
        ]
        
        result_msg, result_info = predict_from_features(features, model)
        return f"{result_msg}\n{result_info}"
    except Exception as e:
        return f"Error processing manual input: {str(e)}"

# Main execution
if __name__ == "__main__":
    # Create the interface
    with gr.Blocks(theme="default") as interface:
        gr.Markdown("""
        # Network Intrusion Detection System
        Upload a PCAP file or use manual input to detect potential network attacks.
        """)
        
        with gr.Tab("PCAP Analysis"):
            pcap_input = gr.File(
                label="Upload PCAP File", 
                file_types=[".pcap", ".pcapng"]
            )
            pcap_output = gr.Textbox(label="Analysis Results")
            pcap_button = gr.Button("Analyze PCAP")
            pcap_button.click(
                fn=process_pcap_input,
                inputs=[pcap_input],
                outputs=pcap_output
            )
        
        with gr.Tab("Manual Input"):
            # Manual input components
            with gr.Row():
                port_num = gr.Slider(1, 4, value=1, 
                    label="Port Number - The switch port through which the flow passed")
                rx_packets = gr.Slider(0, 352772, value=0, 
                    label="Received Packets - Number of packets received by the port")
            
            with gr.Row():
                rx_bytes = gr.Slider(0, 2.715916e08, value=0, 
                    label="Received Bytes - Number of bytes received by the port")
                tx_bytes = gr.Slider(0, 2.392430e08, value=0, 
                    label="Sent Bytes - Number of bytes sent by the port")
            
            with gr.Row():
                tx_packets = gr.Slider(0, 421598, value=0, 
                    label="Sent Packets - Number of packets sent by the port")
                port_duration = gr.Slider(0, 3317, value=0, 
                    label="Port alive Duration (S) - The time port has been alive in seconds")
            
            with gr.Row():
                delta_rx_bytes = gr.Slider(0, 6500000, value=0, 
                    label="Delta Received Bytes")
                delta_tx_bytes = gr.Slider(0, 6500000, value=0, 
                    label="Delta Sent Bytes")
            
            with gr.Row():
                delta_duration = gr.Slider(0, 5, value=0, 
                    label="Delta Port alive Duration (S)")
                conn_point = gr.Slider(1, 5, value=1, 
                    label="Connection Point")
            
            with gr.Row():
                total_load = gr.Slider(0, 1800000, value=0, 
                    label="Total Load/Rate")
                active_flows = gr.Slider(0, 610, value=0, 
                    label="Active Flow Entries")
            
            with gr.Row():
                packets_matched = gr.Slider(0, 1020000, value=0, 
                    label="Packets Matched")
            
            manual_output = gr.Textbox(label="Analysis Results")
            manual_button = gr.Button("Analyze Manual Input")
            
            # Connect manual input components
            manual_button.click(
                fn=process_manual_input,
                inputs=[
                    port_num, rx_packets, rx_bytes, tx_bytes, tx_packets,
                    port_duration, delta_rx_bytes, delta_tx_bytes,
                    delta_duration, conn_point, total_load, active_flows,
                    packets_matched
                ],
                outputs=manual_output
            )
            
            # Example inputs
            gr.Examples(
                examples=[
                    [4, 350188, 14877116, 101354648, 159524, 2910, 278, 280, 
                     5, 4, 0, 6, 667324],
                    [2, 2326, 12856942, 31777516, 2998, 2497, 560, 560, 
                     5, 2, 0, 4, 7259],
                    [4, 150, 19774, 6475473, 3054, 166, 556, 6068, 
                     5, 4, 502, 6, 7418],
                    [2, 209, 20671, 6316631, 274, 96, 3527, 2757949, 
                     5, 2, 183877, 8, 90494],
                    [2, 1733, 37865130, 38063670, 3187, 2152, 0, 556, 
                     5, 3, 0, 4, 14864]
                ],
                inputs=[
                    port_num, rx_packets, rx_bytes, tx_bytes, tx_packets,
                    port_duration, delta_rx_bytes, delta_tx_bytes,
                    delta_duration, conn_point, total_load, active_flows,
                    packets_matched
                ]
            )

    # Launch the interface
    interface.launch()