File size: 11,869 Bytes
e494d40
 
 
4a9e506
34be095
 
 
 
e494d40
 
4a9e506
34be095
e494d40
 
 
 
 
 
2d3610f
 
025f1f3
 
 
e494d40
 
 
 
 
 
 
 
 
 
 
 
025f1f3
 
 
 
 
 
 
 
 
4a9e506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e494d40
025f1f3
e494d40
 
 
 
025f1f3
e494d40
 
 
4a9e506
 
 
 
 
025f1f3
 
e494d40
4a9e506
025f1f3
 
 
 
 
 
e494d40
025f1f3
e494d40
 
 
025f1f3
e494d40
 
025f1f3
 
e494d40
 
 
4a9e506
 
 
e494d40
 
 
 
 
 
 
 
4a9e506
 
 
 
 
e494d40
 
4a9e506
025f1f3
b2cdb46
 
 
 
 
e494d40
 
 
025f1f3
e494d40
 
025f1f3
4a9e506
e494d40
 
 
b2cdb46
 
 
 
025f1f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2cdb46
 
4a9e506
 
 
 
 
 
 
 
 
 
 
 
 
 
e494d40
 
025f1f3
 
4a9e506
 
 
025f1f3
 
 
4a9e506
 
025f1f3
 
4a9e506
 
 
025f1f3
4a9e506
 
 
e494d40
 
 
 
4a9e506
 
 
 
e494d40
 
4a9e506
 
 
 
 
 
 
 
025f1f3
4a9e506
 
 
025f1f3
4a9e506
 
 
 
 
 
 
e494d40
 
 
 
 
 
b2cdb46
 
4a9e506
 
 
 
b2cdb46
 
 
 
 
 
 
 
025f1f3
b2cdb46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e494d40
b2cdb46
 
 
 
 
 
 
025f1f3
 
 
 
 
b2cdb46
 
 
 
 
 
 
 
4a9e506
 
 
 
 
 
 
 
 
b2cdb46
 
 
4a9e506
 
 
 
025f1f3
 
 
 
4a9e506
 
 
 
 
 
 
025f1f3
4a9e506
 
 
b2cdb46
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# This file is kept for reference only and is not used in the enhanced implementation
# The actual implementation is in enhanced_leaderboard.py

import datetime
import json
import os

import pandas as pd
from loguru import logger

from src.envs import ADMIN_USERS, EVAL_RESULTS_PATH


def fetch_model_results(repo_dir: str, competition_type: str, eval_split: str) -> list[dict]:
    model_results = []
    dirpath = os.path.join(repo_dir, competition_type, eval_split)
    for root, _, files in os.walk(dirpath):
        if len(files) == 0 or not all(f.endswith(".json") for f in files):
            continue
        for file in files:
            # Check if the file name is a valid submission id
            if not file.startswith(f"{competition_type}__"):
                continue
            filepath = os.path.join(root, file)
            try:
                with open(filepath, "r") as fp:
                    result = json.load(fp)
                model_results.append(result)
            except Exception as e:
                logger.error(f"Error loading model result from {filepath}: {e}")
                continue

    return model_results


def fetch_tossup_elo_results(repo_dir: str, eval_split: str) -> list[dict]:
    elo_results = []
    dirpath = os.path.join(repo_dir, "tossup", eval_split)
    filepath = os.path.join(dirpath, "elo_results.json")
    with open(filepath, "r") as fp:
        elo_results = json.load(fp)
    return elo_results


def get_submission_date(result: dict) -> datetime.date:
    submission_id = result["id"]
    datetime_str = submission_id.split("__")[-3]
    # str format is YYYYMMDD_HHMMSS in UTC. Convert to eastern time date
    datetime_obj = datetime.datetime.strptime(datetime_str, "%Y%m%d_%H%M%S")
    return datetime_obj.astimezone(datetime.timezone(datetime.timedelta(hours=-5))).date()


def qualify_for_private_observation(username: str, logged_in_username: str | None) -> bool:
    if not logged_in_username:
        return False
    if logged_in_username in ADMIN_USERS:
        return True
    if logged_in_username == username:
        return True
    return False


def get_tossups_leaderboard_df(
    repo_dir: str, eval_split: str, cutoff_date: datetime.date = None, logged_in_username: str = None
) -> pd.DataFrame:
    model_results = fetch_model_results(repo_dir, "tossup", eval_split)
    elo_results = fetch_tossup_elo_results(repo_dir, eval_split)

    eval_results = []
    for result in model_results:
        try:
            submission_id = result["id"]
            metrics = result["metrics"]
            username = result["username"]
            model_name = result["model_name"]
            submission_name = f"{username}/{model_name}"
            if cutoff_date and cutoff_date < get_submission_date(result):
                if not qualify_for_private_observation(username, logged_in_username):
                    continue
                submission_name = f"{username}/{model_name} (*)"
            e_score_ai = elo_results.get(submission_id, 0.0)
            overall_expected_score = 0.5 * (metrics["expected_score"] + e_score_ai)
            row = {
                "Submission": submission_name,
                "E [Score] ⬆️": overall_expected_score,
                "E [Score] (🙋🏻)": metrics["expected_score"],
                "E [Score] (🤖)": e_score_ai,
                "Cost ⬇️": result["cost"],
                "Buz Prec.": metrics["buzz_accuracy"],
                "Buz Freq.": metrics["buzz_frequency"],
                "Buzz Position": metrics["buzz_position"],
                "Win Rate w/ 🙋🏻": metrics.get("human_win_rate", None),
            }
            eval_results.append(row)
        except Exception as e:
            logger.error(f"Error processing model result for eval_split={eval_split} '{username}/{model_name}': {e}")
            continue

    df = pd.DataFrame(eval_results)
    df.sort_values(by="E [Score] ⬆️", ascending=False, inplace=True)
    return df


def get_bonuses_leaderboard_df(
    repo_dir: str, eval_split: str, cutoff_date: datetime.date = None, logged_in_username: str = None
) -> pd.DataFrame:
    model_results = fetch_model_results(repo_dir, "bonus", eval_split)

    eval_results = []
    for result in model_results:
        try:
            metrics = result["metrics"]
            username = result["username"]
            model_name = result["model_name"]
            submission_name = f"{username}/{model_name}"
            if cutoff_date and cutoff_date < get_submission_date(result):
                if not qualify_for_private_observation(username, logged_in_username):
                    continue
                submission_name = f"{username}/{model_name} (*)"

            row = {
                "Submission": submission_name,
                "Cost ⬇️": result["cost"],
                "Effect ⬆️": metrics["effectiveness"],
                "Part Acc": metrics["part_accuracy"],
                "Question Acc": metrics["question_accuracy"],
                "Calibration": metrics["calibration"],
                "Adoption": metrics["adoption"],
            }
            eval_results.append(row)
        except Exception as e:
            logger.exception(f"Error processing model result '{username}/{model_name}': {e}")
            continue

    df = pd.DataFrame(eval_results)
    df.sort_values(by=["Effect ⬆️", "Question Acc", "Part Acc"], ascending=False, inplace=True)
    return df


def colour_pos_neg(v):
    """Return a CSS rule for the cell that called the function."""
    if pd.isna(v):  # keep NaNs unstyled
        return ""
    return "color: green;" if float(v) > 0 else "color: red;"


def color_cost(v):
    if pd.isna(v):
        return ""
    # Bucket the cost into 5 categories with darker colors
    cost = float(v)
    if cost < 1:
        return "color: #006400;"  # dark green
    elif cost < 2:
        return "color: #00008b;"  # dark blue
    elif cost < 3:
        return "color: #8b8b00;"  # dark yellow
    elif cost < 4:
        return "color: #8b4500;"  # dark orange
    else:
        return "color: #8b0000;"  # dark red


# Helper function to bold the highest value in a column
def bold_max(s):
    is_max = s == s.max()
    return ["font-weight: bold" if v else "" for v in is_max]


def highlight_private_row(row):
    return ["background-color: lightblue" if row["Submission"].endswith("(*)") else "" for _ in row]


def fetch_tossup_leaderboard(
    split: str = "tiny_eval", style: bool = True, date: datetime.date = None, username: str = None
):
    df = get_tossups_leaderboard_df(EVAL_RESULTS_PATH, split, date, username)

    # Apply formatting and styling
    percent_cols = ["Buz Prec.", "Buz Freq.", "Win Rate w/ 🙋🏻"]
    float_cols = ["E [Score] ⬆️", "E [Score] (🙋🏻)", "E [Score] (🤖)", "Buzz Position"]
    styled_df = (
        df.style.format(
            {
                **dict.fromkeys(percent_cols, "{:>6.1%}"),
                **dict.fromkeys(float_cols, "{:6.3f}"),
                "Cost ⬇️": "${:,.2f}",
            }
        )
        .map(colour_pos_neg, subset=["E [Score] ⬆️", "E [Score] (🤖)", "E [Score] (🙋🏻)"])
        .map(color_cost, subset=["Cost ⬇️"])
        .apply(highlight_private_row, axis=1)
        .apply(
            bold_max,
            subset=[*percent_cols, *float_cols],
            axis=0,
        )
    )

    return styled_df if style else df


def fetch_bonus_leaderboard(
    split: str = "tiny_eval", style: bool = True, date: datetime.date = None, username: str = None
):
    df = get_bonuses_leaderboard_df(EVAL_RESULTS_PATH, split, date, username)

    # Apply formatting and styling
    styled_df = (
        df.style.format(
            {
                "Question Acc": "{:>6.1%}",
                "Part Acc": "{:>6.1%}",
                "Effect ⬆️": "{:6.3f}",
                "Calibration": "{:>6.1%}",
                "Adoption": "{:>6.1%}",
                "Cost ⬇️": "${:,.2f}",
            }
        )
        .map(colour_pos_neg, subset=["Effect ⬆️"])
        .map(color_cost, subset=["Cost ⬇️"])
        .apply(highlight_private_row, axis=1)
        .apply(
            bold_max,
            subset=["Effect ⬆️", "Question Acc", "Part Acc", "Calibration", "Adoption"],
            axis=0,
        )
    )

    return styled_df if style else df


# TODO: Implement this once we have the proxy server running.
def create_overall_leaderboard(tossup_df: pd.DataFrame, bonus_df: pd.DataFrame) -> pd.DataFrame:
    # Helper to extract username from 'Submission' (format: username/model_name)
    def extract_username(submission: str) -> str:
        username = submission.split("/", 1)[0] if "/" in submission else submission
        if submission.endswith(" (*)"):
            username = username + " (*)"
        return username

    # Add username columns
    tossup_df = tossup_df.copy()
    tossup_df["Username"] = tossup_df["Submission"].apply(extract_username)
    bonus_df = bonus_df.copy()
    bonus_df["Username"] = bonus_df["Submission"].apply(extract_username)

    # Pick best tossup per user (highest Expected Score ⬆️)
    tossup_best = tossup_df.sort_values("E [Score] ⬆️", ascending=False).drop_duplicates("Username")
    tossup_best = tossup_best.set_index("Username")

    # Pick best bonus per user (highest Effect ⬆️)
    bonus_best = bonus_df.sort_values("Effect ⬆️", ascending=False).drop_duplicates("Username")
    bonus_best = bonus_best.set_index("Username")

    # Merge on Username (outer join to include users who have only one type)
    merged = pd.merge(
        tossup_best,
        bonus_best,
        left_index=True,
        right_index=True,
        how="outer",
        suffixes=("_tossup", "_bonus"),
    )

    # Compose a summary row per user
    # Columns: Username, Tossup Submission, Bonus Submission, all metrics from both
    leaderboard = pd.DataFrame(
        {
            "Username": merged.index,
            "Tossup Submission": merged["Submission_tossup"].str.split("/").str[1],
            "Bonus Submission": merged["Submission_bonus"].str.split("/").str[1],
            "Overall Score ⬆️": merged[["E [Score] ⬆️", "Effect ⬆️"]].fillna(0).sum(axis=1),
            "Tossup Score ⬆️": merged["E [Score] ⬆️"],
            "Bonus Effect ⬆️": merged["Effect ⬆️"],
            "Bonus Part Acc": merged["Part Acc"],
            "Bonus Adoption": merged["Adoption"],
        }
    )

    leaderboard = leaderboard.sort_values("Overall Score ⬆️", ascending=False)

    return leaderboard.reset_index(drop=True)


def highlight_overall_row(row):
    return ["background-color: lightblue" if row["Username"].endswith("(*)") else "" for _ in row]


def fetch_overall_leaderboard(
    split: str = "tiny_eval", style: bool = True, date: datetime.date = None, username: str = None
):
    bonus_df = fetch_bonus_leaderboard(split, style=False, date=date, username=username)
    tossup_df = fetch_tossup_leaderboard(split, style=False, date=date, username=username)
    overall_df = create_overall_leaderboard(tossup_df, bonus_df)

    # Apply formatting and styling
    styled_df = (
        overall_df.style.format(
            {
                "Overall Score ⬆️": "{:6.3f}",
                "Tossup Score ⬆️": "{:6.3f}",
                "Bonus Effect ⬆️": "{:6.3f}",
                "Bonus Part Acc": "{:>6.1%}",
                "Bonus Adoption": "{:>6.1%}",
            },
            na_rep="-",
        )
        .map(colour_pos_neg, subset=["Overall Score ⬆️"])
        .apply(highlight_overall_row, axis=1)
        .apply(
            bold_max,
            subset=["Overall Score ⬆️", "Tossup Score ⬆️", "Bonus Effect ⬆️"],
            axis=0,
        )
    )

    return styled_df if style else overall_df