File size: 70,982 Bytes
c6919c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 |
import contextlib
import gc
import os
import re
import random
from encodec import EncodecModel
import funcy
import numpy as np
from scipy.special import softmax
import torch
import math
import torch.distributions as torch_distributions
import torch.nn.functional as F
import tqdm
from transformers import BertTokenizer
from huggingface_hub import hf_hub_download
from .model import GPTConfig, GPT
from .model_fine import FineGPT, FineGPTConfig
import traceback
import sys
import time
import math
from rich.pretty import pprint
from .config import logger, load_all_defaults
from huggingface_hub import hf_hub_url
from collections import Counter
from devtools import debug
from collections import defaultdict
def _cast_bool_env_var(s):
return s.lower() in ("true", "1", "t")
def get_SUNO_USE_DIRECTML():
if _cast_bool_env_var(os.environ.get("SUNO_USE_DIRECTML", "False")):
return True
kwargs = {}
defaults = load_all_defaults(*kwargs)
if defaults["SUNO_USE_DIRECTML"] is True:
return True
else:
return False
SUNO_USE_DIRECTML = get_SUNO_USE_DIRECTML()
dml = None
if SUNO_USE_DIRECTML is True:
print(f" --->> Experimental AMD DirectML support enabled.")
import torch_directml
torch.cuda.is_available = lambda: False
dml = torch_directml.device()
if (
torch.cuda.is_available()
and hasattr(torch.cuda, "amp")
and hasattr(torch.cuda.amp, "autocast")
and hasattr(torch.cuda, "is_bf16_supported")
and torch.cuda.is_bf16_supported()
):
# print(f" --->> Experimental NVIDIA BF16 support enabled.")
autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16)
else:
@contextlib.contextmanager
def autocast():
yield
# hold models in global scope to lazy load
global models
models = {}
global models_devices
models_devices = {}
CONTEXT_WINDOW_SIZE = 1024
SEMANTIC_RATE_HZ = 49.9
SEMANTIC_VOCAB_SIZE = 10_000
CODEBOOK_SIZE = 1024
N_COARSE_CODEBOOKS = 2
N_FINE_CODEBOOKS = 8
COARSE_RATE_HZ = 75
SAMPLE_RATE = 24_000
SUPPORTED_LANGS = [
("English", "en"),
("German", "de"),
("Spanish", "es"),
("French", "fr"),
("Hindi", "hi"),
("Italian", "it"),
("Japanese", "ja"),
("Korean", "ko"),
("Polish", "pl"),
("Portuguese", "pt"),
("Russian", "ru"),
("Turkish", "tr"),
("Chinese", "zh"),
]
ALLOWED_PROMPTS = {"announcer"}
for _, lang in SUPPORTED_LANGS:
for prefix in ("", f"v2{os.path.sep}"):
for n in range(10):
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")
SUPPORTED_LANGS = [
("English", "en"),
("German", "de"),
("Spanish", "es"),
("French", "fr"),
("Hindi", "hi"),
("Italian", "it"),
("Japanese", "ja"),
("Korean", "ko"),
("Polish", "pl"),
("Portuguese", "pt"),
("Russian", "ru"),
("Turkish", "tr"),
("Chinese", "zh"),
]
ALLOWED_PROMPTS = {"announcer"}
for _, lang in SUPPORTED_LANGS:
for prefix in ("", f"v2{os.path.sep}"):
for n in range(10):
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}")
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache")
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False"))
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False"))
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False"))
# Slower, possibly lower quality, but more memory efficient
SUNO_HALF_PRECISION = _cast_bool_env_var(os.environ.get("SUNO_HALF_PRECISION", "False"))
# Slower, possibly lower quality, but more memory efficient
SUNO_HALF_BFLOAT16 = _cast_bool_env_var(os.environ.get("SUNO_HALF_BFLOAT16", "False"))
SUNO_DISABLE_COMPILE = _cast_bool_env_var(os.environ.get("SUNO_DISABLE_COMPILE", "False"))
if sys.platform == "win32":
SUNO_DISABLE_COMPILE = True
if SUNO_USE_DIRECTML is True:
OFFLOAD_CPU = False
OFFLOAD_CPU = False
REMOTE_MODEL_PATHS = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
if not hasattr(torch.nn.functional, "scaled_dot_product_attention") and torch.cuda.is_available():
logger.warning(
"torch version does not support flash attention. You will get faster"
+ " inference speed by upgrade torch to newest nightly version."
)
def _grab_best_device(use_gpu=True):
if torch.cuda.device_count() > 0 and use_gpu:
device = "cuda"
elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS:
device = "mps"
else:
device = "cpu"
return device
def _get_ckpt_path(model_type, use_small=False):
key = model_type
if use_small or USE_SMALL_MODELS:
key += "_small"
return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"])
def _download(from_hf_path, file_name):
os.makedirs(CACHE_DIR, exist_ok=True)
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR)
class InferenceContext:
def __init__(self, benchmark=False):
# we can't expect inputs to be the same length, so disable benchmarking by default
self._chosen_cudnn_benchmark = benchmark
self._cudnn_benchmark = None
def __enter__(self):
self._cudnn_benchmark = torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark
def __exit__(self, exc_type, exc_value, exc_traceback):
torch.backends.cudnn.benchmark = self._cudnn_benchmark
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
@contextlib.contextmanager
def _inference_mode():
if SUNO_USE_DIRECTML is True:
with InferenceContext(), torch.inference_mode(mode=False), torch.no_grad(), autocast():
yield
else:
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast():
yield
def _clear_cuda_cache():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
def clean_models(model_key=None):
global models
model_keys = [model_key] if model_key is not None else list(models.keys())
for k in model_keys:
if k in models:
del models[k]
_clear_cuda_cache()
gc.collect()
def _load_codec_model(device):
model = EncodecModel.encodec_model_24khz()
model.set_target_bandwidth(6.0)
model.eval()
print_loading_info("codec", "EncodecModelPath", device)
if SUNO_USE_DIRECTML is True:
model.to(dml)
else:
model.to(device)
if callable(getattr(torch, "compile")) and not SUNO_DISABLE_COMPILE:
logger.info("torch.compile available, compiling codec model.")
model = torch.compile(model)
else:
logger.info(
"torch.compile *not* available, you will get better performance if you use pytorch >= 2.0."
)
_clear_cuda_cache()
return model
def load_codec_model(use_gpu=True, force_reload=False):
global models
global models_devices
device = _grab_best_device(use_gpu=use_gpu)
if device == "mps":
# encodec doesn't support mps
device = "cpu"
model_key = "codec"
if OFFLOAD_CPU:
models_devices[model_key] = device
device = "cpu"
if model_key not in models or force_reload:
clean_models(model_key=model_key)
model = _load_codec_model(device)
models[model_key] = model
if SUNO_USE_DIRECTML is True:
models[model_key].to(dml)
else:
models[model_key].to(device)
return models[model_key]
####
# Generation Functionality
####
def _tokenize(tokenizer, text):
return tokenizer.encode(text, add_special_tokens=False)
def _detokenize(tokenizer, enc_text):
return tokenizer.decode(enc_text)
def _normalize_whitespace(text):
return re.sub(r"\s+", " ", text).strip()
TEXT_ENCODING_OFFSET = 10_048
SEMANTIC_PAD_TOKEN = 10_000
TEXT_PAD_TOKEN = 129_595
SEMANTIC_INFER_TOKEN = 129_599
def _load_history_prompt(history_prompt_input):
if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"):
history_prompt = np.load(history_prompt_input)
elif isinstance(history_prompt_input, str):
# make sure this works on non-ubuntu
history_prompt_input = os.path.join(*history_prompt_input.split("/"))
if history_prompt_input not in ALLOWED_PROMPTS:
raise ValueError("history prompt not found")
history_prompt = np.load(
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz")
)
elif isinstance(history_prompt_input, dict):
assert "semantic_prompt" in history_prompt_input
assert "coarse_prompt" in history_prompt_input
assert "fine_prompt" in history_prompt_input
history_prompt = history_prompt_input
else:
raise ValueError("history prompt format unrecognized")
return history_prompt
def compute_log_probs(token_list, smoothing_factor, scaling_factor):
# Count the frequency of each token.
token_freq = Counter(token_list)
# Add a smoothing factor.
smoothed_token_freq = {token: freq + smoothing_factor for token, freq in token_freq.items()}
# Normalize to create a probability distribution.
total_tokens = len(token_list) + smoothing_factor * len(smoothed_token_freq)
token_probs = {token: freq / total_tokens for token, freq in smoothed_token_freq.items()}
# Transform into scaled log-probabilities.
log_probs = {token: scaling_factor * np.log(prob) for token, prob in token_probs.items()}
return log_probs
def estimate_s_this_seems_wrong_so_many_math_crashes(prob):
epsilon = 1e-10
num = 0
den = 0
for i in range(
min(len(prob), 10000)
): # apparently any number is fine here but they paper was on natural language so maybe not for us?
# for i in range(768):
b = prob[i] / (prob[i + 1] + epsilon)
t = (i + 2) / (i + 1)
if b > 0 and t > 0:
num += math.log(b) * math.log(t)
den += math.log(t) ** 2
return num / den if den != 0 else 0
def estimate_s(prob):
epsilon = 1e-10
num = 0
den = 0
# for i in range(3000):
# in the paper they say 100 is as good as any higher number? But it's not slow so maybe leave it higher?
# also in the paper they don't have catch divide by 0s though...
# also the paper was on natural language so maybe not for us. Let's just max it out
for i in range(min(len(prob), 10000)):
b = prob[i] / (prob[i + 1] + epsilon)
t = (i + 2) / (i + 1)
if b > 0 and t > 0:
num += math.log(b if b > 0 else 1) * math.log(t if t > 0 else 1)
# den += math.log(t)**2
den += math.log(t if t > 0 else 1) ** 2
# ok NOW this should never be zero and feels more right
return num / den
# return num / den if den != 0 else 0 # or should this be float("inf") ? doesn't seem right.
def compute_k_original_paper(n, s, tau):
print(f"n: {n}, s: {s}, tau: {tau}")
eps = s - 1
k = ((eps * (2 ** (tau))) / (1 - n ** (-eps))) ** (1 / s)
k = round(k)
return k
def compute_k(n, s, tau, max_k):
try:
eps = s - 1
n_eps = n ** (-eps)
if s <= 0:
return 0
tau_s = tau ** (1 / s)
k = (eps * 2 * tau_s / (1 - n_eps)) ** (1 / s)
if isinstance(k, complex):
return 0
k = round(k)
if k > max_k:
return max_k
return k
except OverflowError:
# Return maximum possible k
return max_k
def compute_k_orig(n, s, tau):
print(f"n: {n}, s: {s}, tau: {tau}")
eps = s - 1
k = ((eps * (2 ** (tau))) / (1 - n ** (-eps))) ** (1 / s)
k = round(k)
return k
def compute_k_not_right(n, s, tau, max_k):
print(f"n: {n}, s: {s}, tau: {tau}")
try:
eps = s - 1
n_eps = n ** (-eps)
if s <= 0:
return max_k
tau_s = tau ** (1 / s)
k = (eps * 2 * tau_s / (1 - n_eps)) ** (1 / s)
k = round(k)
return k
except OverflowError:
# Return maximum possible k
return max_k
def compute_k_log(n, s, tau):
print(f"n: {n}, s: {s}, tau: {tau}")
eps = s - 1
try:
log_k = (math.log(eps) + tau * math.log(2) - math.log(1 - n ** (-eps))) / s
k = round(math.exp(log_k))
except OverflowError:
k = float("inf")
return k
# https://github.com/basusourya/mirostat/blob/master/mirostat.py
# try adjusting target tau dynamically based on just length even? Could you shape the "energy" of the clip?
def mirostat_sampling_v1(
logits=None,
tau=5.0,
learning_rate=1.0,
max_surprise=None,
vocab_size=SEMANTIC_VOCAB_SIZE,
indices_surprise_history=[],
running_tot_surprise=0,
generated=[],
):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist()
s = estimate_s(prob_original)
max_k = len(sorted_logits) - 1
k = compute_k(vocab_size, s, max_surprise, max_k) + 1
print(f"\n\nK: {k} s: {s} tau: {max_surprise}")
sorted_logits = sorted_logits[0:k]
sorted_indices = sorted_indices[0:k]
prob_topk = torch.softmax(sorted_logits, dim=0)
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
index_surprise = math.log2(1 / prob_original[prev_i])
print(f"index_surprise: {index_surprise}")
indices_surprise_history.append(index_surprise)
running_tot_surprise += index_surprise
prev = sorted_indices[prev_i]
generated += prev.tolist()
error_surprise = index_surprise - tau
max_surprise -= learning_rate * error_surprise
# full_probs = torch.zeros_like(logits) # 0? or -inf?
full_probs = torch.empty_like(logits).fill_(-float("inf"))
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype)
return (
sorted_indices[prev_i],
max_surprise,
full_probs,
indices_surprise_history,
running_tot_surprise,
generated,
)
def mirostat_sampling_meh(
logits=None,
tau=5.0,
learning_rate=1.0,
max_surprise=None,
vocab_size=SEMANTIC_VOCAB_SIZE,
indices_surprise_history=[],
running_tot_surprise=0,
generated=[],
):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist()
s = estimate_s(prob_original)
max_k = len(sorted_logits) - 1
k = compute_k(vocab_size, s, max_surprise, max_k) + 1
print(f"\n\nK: {k} s: {s} tau: {max_surprise}")
sorted_logits = sorted_logits[0:k]
sorted_indices = sorted_indices[0:k]
prob_topk = torch.softmax(sorted_logits, dim=0)
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
index_surprise = math.log2(1 / prob_original[sorted_indices[prev_i].item()])
print(f"index_surprise: {index_surprise}")
indices_surprise_history.append(index_surprise)
running_tot_surprise += index_surprise
prev = sorted_indices[prev_i]
generated += prev.tolist()
error_surprise = index_surprise - tau
max_surprise -= learning_rate * error_surprise
full_probs = torch.empty_like(logits).fill_(-float("inf"))
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype)
item_next = sorted_indices[prev_i]
return (
item_next,
max_surprise,
full_probs,
indices_surprise_history,
running_tot_surprise,
generated,
)
def mirostat_sampling_least(
logits=None,
tau=5.0,
learning_rate=1.0,
max_surprise=None,
vocab_size=SEMANTIC_VOCAB_SIZE,
indices_surprise_history=[],
running_tot_surprise=0,
generated=[],
):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist()
s = estimate_s(prob_original)
max_k = len(sorted_logits) - 1
k = compute_k(vocab_size, s, max_surprise, max_k) + 1
print(f"\n\nK: {k} s: {s} tau: {max_surprise}")
sorted_logits = sorted_logits[0:k]
sorted_indices = sorted_indices[0:k]
prob_topk = torch.softmax(sorted_logits, dim=0)
prev_i = torch.argmin(prob_topk).unsqueeze(0)
index_surprise = math.log2(1 / prob_original[sorted_indices[prev_i].item()])
print(f"index_surprise: {index_surprise}")
indices_surprise_history.append(index_surprise)
running_tot_surprise += index_surprise
prev = sorted_indices[prev_i]
generated += prev.tolist()
error_surprise = index_surprise - tau
max_surprise -= learning_rate * error_surprise
full_probs = torch.empty_like(logits).fill_(-float("inf"))
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype)
# Return least likely token and reverse generated logits
# return sorted_indices[prev_i], max_surprise, torch.flip(full_probs, dims=[0]), indices_surprise_history, running_tot_surprise, generated
return (
sorted_indices[prev_i],
max_surprise,
full_probs,
indices_surprise_history,
running_tot_surprise,
generated,
)
def sine_wave_temperature(current_token, max_token):
return 3.0 + 2.1 * (math.sin(2 * math.pi * (current_token / 150)) / 2.1 + 0.2)
def sine_wave_temperature(current_token, max_token, period=100, phase_shift=0):
return 0.5 + 2.0 * (math.sin(2 * math.pi * (current_token / period) + phase_shift) / 2 + 0.5)
def sine_wave_temperature(current_token, token_period, start_phase, temp_min, temp_max):
phase = 2 * math.pi * ((current_token + start_phase) / token_period)
temp_range = temp_max - temp_min
return temp_min + temp_range * ((math.sin(phase) / 2) + 0.5)
def mirostat_sampling(
logits=None,
tau=5.0,
learning_rate=1.0,
max_surprise=None,
vocab_size=SEMANTIC_VOCAB_SIZE,
indices_surprise_history=[],
running_tot_surprise=0,
generated=[],
temperature_fn=None,
):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist()
s = estimate_s(prob_original)
max_k = len(sorted_logits) - 1
k = compute_k(vocab_size, s, max_surprise, max_k) + 1
sorted_logits = sorted_logits[0:k]
sorted_indices = sorted_indices[0:k]
# Current location in the segment
current_token = len(generated)
max_token = 768 # Maximum sample length
if temperature_fn is not None:
temp = temperature_fn(current_token, max_token)
sorted_logits = torch.clamp(sorted_logits, -10000, 10000)
# Apply to logits before softmax
prob_topk = torch.softmax(sorted_logits / temp, dim=0)
prob_topk = torch.clamp(prob_topk, 1e-9, 1 - 1e-9) # Ensures probabilities are valid
else:
prob_topk = torch.softmax(sorted_logits, dim=0)
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
epsilon = 1e-10
index_surprise = math.log2(1 / (prob_original[sorted_indices[prev_i].item()] + epsilon))
indices_surprise_history.append(index_surprise)
running_tot_surprise += index_surprise
prev = sorted_indices[prev_i]
generated += prev.tolist()
error_surprise = index_surprise - tau
max_surprise -= learning_rate * error_surprise
full_probs = torch.empty_like(logits).fill_(-float("inf"))
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype)
if current_token % 25 == 0 and False:
print(f"Temperature: {temp}")
print(f"index_surprise: {index_surprise}")
print(f"\n\nK: {k} s: {s} tau: {max_surprise}")
return (
sorted_indices[prev_i],
max_surprise,
full_probs,
indices_surprise_history,
running_tot_surprise,
generated,
)
def compute_negative_influence(negative_logits, n, window_size, negative_scale):
# Check if negative_logits is empty
if len(negative_logits) == 0:
return 0
# Ensure n is within range
n = min(max(n, 0), len(negative_logits) - 1)
# Adjust window_size if it's larger than negative_logits length
window_size = min(window_size, len(negative_logits))
# Get the start and end of the window
start = max(0, n - window_size)
end = min(len(negative_logits), n + window_size + 1)
# Generate a Gaussian distribution for the weights and normalize them
weights = np.exp(-((np.arange(start, end) - n) ** 2) / (2.0 * window_size**2))
weights /= weights.sum()
# Compute a weighted average of negative_logits within the window
negative_influence = np.average(negative_logits[start:end], weights=weights, axis=0)
# Adjust the influence by the negative_scale
negative_influence *= min(max(negative_scale, 0), 1) # Ensure negative_scale is between 0 and 1
return negative_influence
def generate_text_semantic(
text,
history_prompt=None,
temp=0.7,
top_k=None,
top_p=None,
silent=False,
min_eos_p=0.2,
max_gen_duration_s=None,
allow_early_stop=True,
use_kv_caching=True,
use_mirostat_sampling=False,
# tau = 31100.0,
tau=5.0,
miro_learning_rate=1.0,
token_repeat_penalty=0.0,
inverted_p=None,
bottom_k=None,
return_logits=False,
negative_tokens=None,
negative_logits=None,
negative_text_prompt_logits_scale=None,
negative_text_prompt_logits_scale_window_size=64,
negative_text_prompt_divergence_scale=None,
):
"""Generate semantic tokens from text."""
if return_logits:
all_logits = []
if temp == 0:
temp = 0.001
# debug(locals())
logger.debug(locals())
assert isinstance(text, str)
text = _normalize_whitespace(text)
# assert len(text.strip()) > 0
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
semantic_history = history_prompt["semantic_prompt"]
assert (
isinstance(semantic_history, np.ndarray)
and len(semantic_history.shape) == 1
and len(semantic_history) > 0
and semantic_history.min() >= 0
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
)
else:
semantic_history = None
# load models if not yet exist
global models
global models_devices
if "text" not in models:
if SUNO_USE_DIRECTML is True:
preload_models(load_one_model_type="text")
else:
preload_models()
model_container = models["text"]
model = model_container["model"]
tokenizer = model_container["tokenizer"]
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
if OFFLOAD_CPU:
if GLOBAL_ENABLE_MPS:
device = _grab_best_device(use_gpu=False)
models_devices["text"] = device
model.to(models_devices["text"])
device = next(model.parameters()).device
if len(encoded_text) > 256:
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
logger.warning(f"warning, text too long, lopping of last {p}%")
encoded_text = encoded_text[:256]
encoded_text = np.pad(
encoded_text,
(0, 256 - len(encoded_text)),
constant_values=TEXT_PAD_TOKEN,
mode="constant",
)
if semantic_history is not None:
semantic_history = semantic_history.astype(np.int64)
# print(f"Actual length of semantic input: {len(semantic_history)}")
# lop off if history is too long, pad if needed
semantic_history = semantic_history[-256:]
semantic_history = np.pad(
semantic_history,
(0, 256 - len(semantic_history)),
constant_values=SEMANTIC_PAD_TOKEN,
mode="constant",
)
else:
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
x = torch.from_numpy(
np.hstack([encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])]).astype(
np.int64
)
)[None]
assert x.shape[1] == 256 + 256 + 1
with _inference_mode():
if SUNO_USE_DIRECTML is True:
device = dml
x = x.to(device)
n_tot_steps = 768
# preallocate tensor
x_initial = x.shape[1]
x = torch.hstack([x, torch.empty([1, n_tot_steps], dtype=torch.int32, device=device)])
# custom tqdm updates since we don't know when eos will occur
pbar = tqdm.tqdm(disable=silent, total=n_tot_steps)
pbar_state = 0
tot_generated_duration_s = 0
kv_cache = None
# mirostat
prev = None
max_surprise = 2 * tau
indices_surprise_history = []
running_tot_surprise = 0
miro_generated = [] # debug
token_counts = defaultdict(int)
for n in range(n_tot_steps):
# if use_kv_caching and kv_cache is not None:
# x_input = x[:, [-1]]
# else:
# x_input = x
x_input = (
x[:, [x_initial + n - 1]]
if use_kv_caching and kv_cache is not None
else x[:, : x_initial + n]
)
logits, kv_cache = model(
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
)
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
if allow_early_stop:
relevant_logits = torch.hstack(
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos
)
# Detach and convert to numpy for faster calculations
original_device = relevant_logits.device
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
# Jon doing some silly ideas here, but inverted_p seems genuinely useful
if top_p is not None or inverted_p is not None:
if inverted_p is not None:
sorted_indices = np.argsort(relevant_logits)
cumulative_limit = inverted_p
elif top_p is not None:
sorted_indices = np.argsort(relevant_logits)[::-1]
cumulative_limit = top_p
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > cumulative_limit
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
relevant_logits = relevant_logits.to(original_device)
if top_k is not None or bottom_k is not None:
if bottom_k is not None:
v, _ = torch.topk(
relevant_logits, max(bottom_k, relevant_logits.size(-1)), largest=False
)
relevant_logits[relevant_logits > v[-1]] = -float("Inf")
elif top_k is not None:
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
if use_mirostat_sampling:
logits_for_miro = relevant_logits / temp
(
item_next,
max_surprise,
probs,
indices_surprise_history,
running_tot_surprise,
miro_generated,
) = mirostat_sampling(
logits=logits_for_miro,
max_surprise=max_surprise,
tau=tau,
learning_rate=miro_learning_rate,
vocab_size=SEMANTIC_VOCAB_SIZE,
indices_surprise_history=indices_surprise_history,
running_tot_surprise=running_tot_surprise,
generated=miro_generated,
temperature_fn=None,
)
# item_next = item_next.to(torch.int32)
else:
if token_repeat_penalty != 0.0 and token_repeat_penalty != 1.0:
for token, count in token_counts.items():
relevant_logits[token] += math.log(token_repeat_penalty) * count
if return_logits:
all_logits.append(relevant_logits)
probs = F.softmax(relevant_logits / temp, dim=-1)
item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
if allow_early_stop and (
item_next == SEMANTIC_VOCAB_SIZE
or (min_eos_p is not None and probs[-1] >= min_eos_p)
):
n -= 1 # backtrack 1
# eos found, so break
pbar.total = n
pbar.update(n - pbar_state)
break
# x = torch.cat((x, item_next[None]), dim=1)
if token_repeat_penalty != 0.0 and token_repeat_penalty != 1.0:
token_counts[int(item_next)] += 1
x[0][x_initial + n] = item_next
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
pbar.total = n
pbar.update(n - pbar_state)
break
if n == n_tot_steps - 1:
pbar.total = n
pbar.update(n - pbar_state)
break
del logits, relevant_logits, probs, item_next
if n > pbar_state:
if n > pbar.total:
pbar.total = n
pbar.update(n - pbar_state)
pbar_state = n
pbar.total = n
pbar.refresh()
pbar.close()
# out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
out = x.detach().cpu().numpy().squeeze()[x_initial : x_initial + n + 1]
if use_mirostat_sampling and False:
print(f"Target tau: {tau}")
print("Total surprise value:", sum(indices_surprise_history))
print("Average surprise value:", sum(indices_surprise_history) / len(out))
print(f"Generated Miro: {miro_generated}")
print(f"out: {out}")
if OFFLOAD_CPU:
model.to("cpu")
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
_clear_cuda_cache()
if SUNO_USE_DIRECTML is True:
clean_models()
if return_logits:
return out, all_logits
else:
return out
def generate_text_semantic_branching_not_batching(
text,
history_prompt=None,
temp=0.7,
top_k=None,
top_p=None,
silent=False,
min_eos_p=0.2,
max_gen_duration_s=None,
allow_early_stop=True,
use_kv_caching=True,
num_sample_per_step=2,
):
"""Generate semantic tokens from text."""
assert isinstance(text, str)
text = _normalize_whitespace(text)
assert len(text.strip()) > 0
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
semantic_history = history_prompt["semantic_prompt"]
assert (
isinstance(semantic_history, np.ndarray)
and len(semantic_history.shape) == 1
and len(semantic_history) > 0
and semantic_history.min() >= 0
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
)
else:
semantic_history = None
# load models if not yet exist
global models
global models_devices
if "text" not in models:
if SUNO_USE_DIRECTML is True:
preload_models(load_one_model_type="text")
else:
preload_models()
model_container = models["text"]
model = model_container["model"]
tokenizer = model_container["tokenizer"]
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET
if OFFLOAD_CPU:
model.to(models_devices["text"])
device = next(model.parameters()).device
if len(encoded_text) > 256:
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1)
logger.warning(f"warning, text too long, lopping of last {p}%")
encoded_text = encoded_text[:256]
encoded_text = np.pad(
encoded_text,
(0, 256 - len(encoded_text)),
constant_values=TEXT_PAD_TOKEN,
mode="constant",
)
if semantic_history is not None:
semantic_history = semantic_history.astype(np.int64)
# lop off if history is too long, pad if needed
semantic_history = semantic_history[-256:]
semantic_history = np.pad(
semantic_history,
(0, 256 - len(semantic_history)),
constant_values=SEMANTIC_PAD_TOKEN,
mode="constant",
)
else:
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256)
# x = torch.from_numpy(
# np.hstack([
# encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])
# ]).astype(np.int64)
# )[None]
x = torch.from_numpy(
np.hstack([encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])]).astype(
np.int64
)
).repeat(num_sample_per_step, 1)
assert x.shape[1] == 256 + 256 + 1
with _inference_mode():
x = x.to(device)
n_tot_steps = 768
# custom tqdm updates since we don't know when eos will occur
pbar = tqdm.tqdm(disable=silent, total=n_tot_steps)
pbar_state = 0
tot_generated_duration_s = 0
kv_cache = None
for n in range(n_tot_steps):
if use_kv_caching and kv_cache is not None:
x_input = x[:, [-1]]
else:
x_input = x
logits, kv_cache = model(
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache
)
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE]
if allow_early_stop:
relevant_logits = torch.hstack(
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos
)
if top_p is not None:
# faster to convert to numpy
original_device = relevant_logits.device
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
sorted_indices = np.argsort(relevant_logits)[::-1]
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
relevant_logits = relevant_logits.to(original_device)
if top_k is not None:
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
# probs = F.softmax(relevant_logits / temp, dim=-1)
# item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
probs = F.softmax(relevant_logits / temp, dim=-1)
item_next = torch.multinomial(probs, num_samples=num_sample_per_step).to(torch.int32)
if allow_early_stop and (
item_next == SEMANTIC_VOCAB_SIZE
or (min_eos_p is not None and probs[-1] >= min_eos_p)
):
# eos found, so break
pbar.update(n - pbar_state)
break
# x = torch.cat((x, item_next[None]), dim=1)
for i in range(num_sample_per_step):
x[i] = torch.cat((x[i], item_next[i][None]), dim=0)
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s:
pbar.update(n - pbar_state)
break
if n == n_tot_steps - 1:
pbar.update(n - pbar_state)
break
del logits, relevant_logits, probs, item_next
if n > pbar_state:
if n > pbar.total:
pbar.total = n
pbar.update(n - pbar_state)
pbar_state = n
pbar.total = n
pbar.refresh()
pbar.close()
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :]
if OFFLOAD_CPU:
model.to("cpu")
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE)
_clear_cuda_cache()
return out
def generate_coarse(
x_semantic,
history_prompt=None,
temp=0.7,
top_k=None,
top_p=None,
silent=False,
max_coarse_history=630, # min 60 (faster), max 630 (more context)
sliding_window_len=60,
use_kv_caching=True,
x_coarse_history_alignment_hack=-2,
):
"""Generate coarse audio codes from semantic tokens."""
logger.debug(locals())
assert (
isinstance(x_semantic, np.ndarray)
and len(x_semantic.shape) == 1
and len(x_semantic) > 0
and x_semantic.min() >= 0
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
)
assert 60 <= max_coarse_history <= 630
assert max_coarse_history + sliding_window_len <= 1024 - 256
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
x_semantic_history = history_prompt["semantic_prompt"]
x_coarse_history = history_prompt["coarse_prompt"]
# print(f"Pre Trim sem coars: {x_semantic_history.shape} {x_coarse_history.shape}")
assert (
isinstance(x_semantic_history, np.ndarray)
and len(x_semantic_history.shape) == 1
and len(x_semantic_history) > 0
and x_semantic_history.min() >= 0
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
and isinstance(x_coarse_history, np.ndarray)
and len(x_coarse_history.shape) == 2
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
and x_coarse_history.shape[-1] >= 0
and x_coarse_history.min() >= 0
and x_coarse_history.max() <= CODEBOOK_SIZE - 1
and (
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
== round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
)
)
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
# trim histories correctly
n_semantic_hist_provided = np.min(
[
max_semantic_history,
len(x_semantic_history) - len(x_semantic_history) % 2,
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
]
)
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
# TODO: bit of a hack for time alignment (sounds better)
# x_coarse_history = x_coarse_history[:-2]
x_coarse_history = x_coarse_history[:x_coarse_history_alignment_hack]
else:
x_semantic_history = np.array([], dtype=np.int32)
x_coarse_history = np.array([], dtype=np.int32)
# print(f"actual lengths we're using, x_semantic_history: {len(x_semantic_history)} x_coarse_history: {len(x_coarse_history)}")
# load models if not yet exist
global models
global models_devices
if "coarse" not in models:
if SUNO_USE_DIRECTML is True:
preload_models(load_one_model_type="coarse")
else:
preload_models()
model = models["coarse"]
if OFFLOAD_CPU:
if GLOBAL_ENABLE_MPS:
device = _grab_best_device(use_gpu=False)
models_devices["coarse"] = device
model.to(models_devices["coarse"])
device = next(model.parameters()).device
# start loop
n_steps = int(
round(
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
* N_COARSE_CODEBOOKS
)
)
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
# reminder to try filling up some of the COARSE_INFER_TOKEN with history to get better short clips
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
x_coarse = x_coarse_history.astype(np.int32)
base_semantic_idx = len(x_semantic_history)
with _inference_mode():
if SUNO_USE_DIRECTML is True:
device = dml
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device)
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device)
n_window_steps = int(np.ceil(n_steps / sliding_window_len))
n_step = 0
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
# pad from right side
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :]
x_in = x_in[:, :256]
x_in = F.pad(
x_in,
(0, 256 - x_in.shape[-1]),
"constant",
COARSE_SEMANTIC_PAD_TOKEN,
)
x_in = torch.hstack(
[
x_in,
torch.tensor([COARSE_INFER_TOKEN])[None].to(device),
x_coarse_in[:, -max_coarse_history:],
]
)
kv_cache = None
for _ in range(sliding_window_len):
if n_step >= n_steps:
continue
is_major_step = n_step % N_COARSE_CODEBOOKS == 0
if use_kv_caching and kv_cache is not None:
x_input = x_in[:, [-1]]
else:
x_input = x_in
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache)
logit_start_idx = SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
logit_end_idx = SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
if top_p is not None:
# faster to convert to numpy
logits_device = relevant_logits.device
logits_dtype = relevant_logits.type()
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
sorted_indices = np.argsort(relevant_logits)[::-1]
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype)
if top_k is not None:
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1)))
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
probs = F.softmax(relevant_logits / temp, dim=-1)
# multinomial bugged on mps: shuttle to cpu if necessary
inf_device = probs.device
if probs.device.type == "mps":
probs = probs.to("cpu")
item_next = torch.multinomial(probs, num_samples=1)
probs = probs.to(inf_device)
item_next = item_next.to(inf_device)
item_next += logit_start_idx
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1)
x_in = torch.cat((x_in, item_next[None]), dim=1)
del logits, relevant_logits, probs, item_next
n_step += 1
del x_in
del x_semantic_in
if OFFLOAD_CPU:
model.to("cpu")
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :]
del x_coarse_in
assert len(gen_coarse_arr) == n_steps
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
for n in range(1, N_COARSE_CODEBOOKS):
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
_clear_cuda_cache()
if SUNO_USE_DIRECTML is True:
clean_models()
return gen_coarse_audio_arr
def generate_coarse_amd_directml(
x_semantic,
history_prompt=None,
temp=0.7,
top_k=None,
top_p=None,
silent=False,
max_coarse_history=630, # min 60 (faster), max 630 (more context)
sliding_window_len=60,
use_kv_caching=True,
x_coarse_history_alignment_hack=-2,
):
"""Generate coarse audio codes from semantic tokens."""
logger.debug(locals())
assert (
isinstance(x_semantic, np.ndarray)
and len(x_semantic.shape) == 1
and len(x_semantic) > 0
and x_semantic.min() >= 0
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1
)
assert 60 <= max_coarse_history <= 630
assert max_coarse_history + sliding_window_len <= 1024 - 256
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio))
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
x_semantic_history = history_prompt["semantic_prompt"]
x_coarse_history = history_prompt["coarse_prompt"]
assert (
isinstance(x_semantic_history, np.ndarray)
and len(x_semantic_history.shape) == 1
and len(x_semantic_history) > 0
and x_semantic_history.min() >= 0
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1
and isinstance(x_coarse_history, np.ndarray)
and len(x_coarse_history.shape) == 2
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS
and x_coarse_history.shape[-1] >= 0
and x_coarse_history.min() >= 0
and x_coarse_history.max() <= CODEBOOK_SIZE - 1
and (
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1)
== round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1)
)
)
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE
# trim histories correctly
n_semantic_hist_provided = np.min(
[
max_semantic_history,
len(x_semantic_history) - len(x_semantic_history) % 2,
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)),
]
)
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio))
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32)
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32)
# TODO: bit of a hack for time alignment (sounds better)
x_coarse_history = x_coarse_history[:-2]
else:
x_semantic_history = np.array([], dtype=np.int32)
x_coarse_history = np.array([], dtype=np.int32)
# load models if not yet exist
global models
global models_devices
if "coarse" not in models:
if SUNO_USE_DIRECTML is True:
preload_models(load_one_model_type="coarse")
else:
preload_models()
model = models["coarse"]
if OFFLOAD_CPU:
if GLOBAL_ENABLE_MPS:
device = _grab_best_device(use_gpu=False)
models_devices["coarse"] = device
model.to(models_devices["coarse"])
# device = next(model.parameters()).device
# start loop
n_steps = int(
round(
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS)
* N_COARSE_CODEBOOKS
)
)
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32)
x_coarse = x_coarse_history.astype(np.int32)
base_semantic_idx = len(x_semantic_history)
cumulative_time = 0
with _inference_mode():
try:
# x_semantic_in = torch.from_numpy(x_semantic)[None].to(dml)
x_semantic_in_np = x_semantic[None]
# x_coarse_in = torch.from_numpy(x_coarse)[None].to(dml)
x_coarse_in_np = x_coarse[None]
n_window_steps = int(np.ceil(n_steps / sliding_window_len))
n_step = 0
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent):
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio))
# pad from right side
x_in_np = x_semantic_in_np[:, np.max([0, semantic_idx - max_semantic_history]) :]
x_in_np = x_in_np[:, :256]
"""
x_in_np = F.pad(
x_in_np,
(0, 256 - x_in_np.shape[-1]),
"constant",
COARSE_SEMANTIC_PAD_TOKEN,
)
"""
np_pad_size = ((0, 0), (0, 256 - x_in_np.shape[-1]))
x_in_np = np.pad(
x_in_np,
np_pad_size,
constant_values=COARSE_SEMANTIC_PAD_TOKEN,
mode="constant",
)
"""
x_in = torch.hstack(
[
x_in,
torch.tensor([COARSE_INFER_TOKEN])[None].to(dml),
x_coarse_in[:, -max_coarse_history:],
]
)
"""
coarse_infer_token_np = np.array([COARSE_INFER_TOKEN])[None]
x_in_np = np.hstack(
[
x_in_np,
coarse_infer_token_np,
x_coarse_in_np[:, -max_coarse_history:],
]
)
kv_cache = None
for _ in range(sliding_window_len):
if n_step >= n_steps:
continue
is_major_step = n_step % N_COARSE_CODEBOOKS == 0
if use_kv_caching and kv_cache is not None:
x_input = x_in_np[:, [-1]]
else:
x_input = x_in_np
x_input_tensor = torch.from_numpy(x_input).to(dml)
logits, kv_cache = model(
x_input_tensor, use_cache=use_kv_caching, past_kv=kv_cache
)
logit_start_idx = SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE
logit_end_idx = SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx]
if top_p is not None:
# faster to convert to numpy
# original_device = relevant_logits.device
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy()
sorted_indices = np.argsort(relevant_logits)[::-1]
sorted_logits = relevant_logits[sorted_indices]
cumulative_probs = np.cumsum(softmax(sorted_logits))
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy()
sorted_indices_to_remove[0] = False
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf
relevant_logits = torch.from_numpy(relevant_logits)
# relevant_logits = relevant_logits.to(original_device)
# stay as numpy, since we converted for directml anyway...
if top_k is not None:
v, _ = torch.topk(
relevant_logits.to(dml),
min(top_k, relevant_logits.to(dml).size(-1)),
)
relevant_logits[relevant_logits < v[-1]] = -float("Inf")
# probs = F.softmax(relevant_logits.to(dml) / temp, dim=-1)
start_time = time.time()
# item_next = torch.multinomial(probs, num_samples=1).to(torch.int32)
probs_np = (
F.softmax(relevant_logits.to(dml) / temp, dim=-1)
.cpu()
.type(torch.float32)
.numpy()
)
item_next_np = np.random.choice(
np.arange(probs_np.shape[-1]), size=1, p=probs_np.flatten()
)
# item_next = torch.from_numpy(item_next_np).to(torch.int32).to(dml)
# doing in raw numpy same speed with AMD directML, but maybe faster if you setup MKL correctly?
# actually tha wasn't quite righ anyway...
end_time = time.time()
cumulative_time = cumulative_time + (end_time - start_time)
# amd_multinomial = torch_distributions.Categorical(probs)
# action = amd_multinomial.sample((1,))
# item_next = amd_multinomial.log_prob(action).to(torch.int32)
# multinomial bugged on mps: shuttle to cpu if necessary
# inf_device = probs.device
# if probs.device.type == "mps" or True:
# probs = probs.to("cpu")
# # print(f"Here in coarse: {probs.device}")
# item_next = torch.multinomial(probs, num_samples=1)
# probs = probs.to(inf_device)
# item_next = item_next.to(inf_device)
item_next_np += logit_start_idx
x_coarse_in_np = np.hstack((x_coarse_in_np, item_next_np[None]))
# x_coarse_in = torch.from_numpy(x_coarse_in_np).to(dml)
# x_in = torch.cat((x_in_np.to(dml), item_next_np[None]), dim=1)
x_in_np = np.hstack((x_in_np, item_next_np[None]))
del logits, relevant_logits, probs_np, item_next_np
n_step += 1
del x_in_np
del x_semantic_in_np
except RuntimeError as e:
print(f"RuntimeError: {e}")
# show all possble details and traceback, print to output
print(f"Traceback: {traceback.format_exc()}") # and print(sys.exc_info()[2])
print(f"Exception: {sys.exc_info()[2]}")
if OFFLOAD_CPU:
model.to("cpu")
gen_coarse_arr = x_coarse_in_np.squeeze()[len(x_coarse_history) :]
del x_coarse_in_np
assert len(gen_coarse_arr) == n_steps
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE
for n in range(1, N_COARSE_CODEBOOKS):
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE
_clear_cuda_cache()
if SUNO_USE_DIRECTML is True:
clean_models()
return gen_coarse_audio_arr
def generate_fine(
x_coarse_gen,
history_prompt=None,
temp=0.5,
silent=True,
):
if temp == 0:
temp = 0.001
"""Generate full audio codes from coarse audio codes."""
assert (
isinstance(x_coarse_gen, np.ndarray)
and len(x_coarse_gen.shape) == 2
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1
and x_coarse_gen.shape[1] > 0
and x_coarse_gen.min() >= 0
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1
)
if history_prompt is not None:
history_prompt = _load_history_prompt(history_prompt)
x_fine_history = history_prompt["fine_prompt"]
assert (
isinstance(x_fine_history, np.ndarray)
and len(x_fine_history.shape) == 2
and x_fine_history.shape[0] == N_FINE_CODEBOOKS
and x_fine_history.shape[1] >= 0
and x_fine_history.min() >= 0
and x_fine_history.max() <= CODEBOOK_SIZE - 1
)
else:
x_fine_history = None
n_coarse = x_coarse_gen.shape[0]
# load models if not yet exist
global models
global models_devices
if "fine" not in models:
if SUNO_USE_DIRECTML is True:
preload_models(load_one_model_type="fine")
else:
preload_models()
model = models["fine"]
if OFFLOAD_CPU:
if GLOBAL_ENABLE_MPS:
device = _grab_best_device(use_gpu=False)
models_devices["fine"] = device
model.to(models_devices["fine"])
device = next(model.parameters()).device
# make input arr
in_arr = np.vstack(
[
x_coarse_gen,
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1]))
+ CODEBOOK_SIZE, # padding
]
).astype(np.int32)
# prepend history if available (max 512)
if x_fine_history is not None:
x_fine_history = x_fine_history.astype(np.int32)
in_arr = np.hstack(
[
x_fine_history[:, -512:].astype(np.int32),
in_arr,
]
)
n_history = x_fine_history[:, -512:].shape[1]
else:
n_history = 0
n_remove_from_end = 0
# need to pad if too short (since non-causal model)
if in_arr.shape[1] < 1024:
n_remove_from_end = 1024 - in_arr.shape[1]
in_arr = np.hstack(
[
in_arr,
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE,
]
)
# we can be lazy about fractional loop and just keep overwriting codebooks
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1
with _inference_mode():
if SUNO_USE_DIRECTML is True:
device = dml
in_arr = torch.tensor(in_arr.T).to(device)
for n in tqdm.tqdm(range(n_loops), disable=silent):
start_idx = np.min([n * 512, in_arr.shape[0] - 1024])
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512])
rel_start_fill_idx = start_fill_idx - start_idx
in_buffer = in_arr[start_idx : start_idx + 1024, :][None]
for nn in range(n_coarse, N_FINE_CODEBOOKS):
logits = model(nn, in_buffer)
if temp is None:
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE]
codebook_preds = torch.argmax(relevant_logits, -1)
else:
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp
probs = F.softmax(relevant_logits, dim=-1)
codebook_preds = torch.multinomial(
probs[rel_start_fill_idx:1024], num_samples=1
).reshape(-1)
codebook_preds = codebook_preds.to(torch.int32)
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds
del logits, codebook_preds
# transfer over info into model_in and convert to numpy
for nn in range(n_coarse, N_FINE_CODEBOOKS):
in_arr[
start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn
] = in_buffer[0, rel_start_fill_idx:, nn]
del in_buffer
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T
del in_arr
if OFFLOAD_CPU:
model.to("cpu")
gen_fine_arr = gen_fine_arr[:, n_history:]
if n_remove_from_end > 0:
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end]
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1]
_clear_cuda_cache()
if SUNO_USE_DIRECTML is True:
clean_models()
return gen_fine_arr
def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE):
assert len(arr.shape) == 2
arr = arr.copy()
if offset_size is not None:
for n in range(1, arr.shape[0]):
arr[n, :] += offset_size * n
flat_arr = arr.ravel("F")
return flat_arr
COARSE_SEMANTIC_PAD_TOKEN = 12_048
COARSE_INFER_TOKEN = 12_050
def codec_decode(fine_tokens):
"""Turn quantized audio codes into audio array using encodec."""
# load models if not yet exist
global models
global models_devices
if "codec" not in models:
if SUNO_USE_DIRECTML is True:
preload_models(load_one_model_type="codec")
else:
preload_models()
model = models["codec"]
if OFFLOAD_CPU:
if GLOBAL_ENABLE_MPS:
device = _grab_best_device(use_gpu=False)
models_devices["codec"] = device
model.to(models_devices["codec"])
device = next(model.parameters()).device
arr = torch.from_numpy(fine_tokens)[None]
if SUNO_USE_DIRECTML is True:
arr = arr.to(dml)
else:
arr = arr.to(device)
arr = arr.transpose(0, 1)
emb = model.quantizer.decode(arr)
out = model.decoder(emb)
audio_arr = out.detach().cpu().numpy().squeeze()
del arr, emb, out
if OFFLOAD_CPU:
model.to("cpu")
if SUNO_USE_DIRECTML is True:
clean_models()
return audio_arr
## Added:
# Just overriding this because somehow I keep loading the wrong models?
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"):
logger.debug(locals())
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small)
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
global models
global models_devices
device = _grab_best_device(use_gpu=use_gpu)
model_key = f"{model_type}"
if OFFLOAD_CPU:
models_devices[model_key] = device
device = "cpu"
if model_key not in models or force_reload:
ckpt_path = _get_ckpt_path(model_type, use_small=use_small)
clean_models(model_key=model_key)
model = _load_model_f(ckpt_path, device)
models[model_key] = model
if model_type == "text":
if SUNO_USE_DIRECTML is True:
models[model_key]["model"].to(dml)
else:
models[model_key]["model"].to(device)
else:
if SUNO_USE_DIRECTML is True:
models[model_key].to(dml)
else:
models[model_key].to(device)
logger.debug(f"Loaded {model_key} onto {device}.")
return models[model_key]
def print_loading_info(model_key, ckpt_path, device):
device_str = str(device)
if SUNO_USE_DIRECTML is True:
device_str = "directml (partial AMD GPU support)"
if GLOBAL_ENABLE_MPS:
device_str = "cpu/mps: Partial Apple Support"
if OFFLOAD_CPU:
device_str = "cpu/gpu: Offloading, cpu until needed, then gpu"
print(f"--Loading {model_key} model from {ckpt_path} to {device_str}")
def _load_model(ckpt_path, device, use_small=False, model_type="text"):
if model_type == "text":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "coarse":
ConfigClass = GPTConfig
ModelClass = GPT
elif model_type == "fine":
ConfigClass = FineGPTConfig
ModelClass = FineGPT
else:
raise NotImplementedError()
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type
model_info = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(ckpt_path):
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.")
remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"])
print(
f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}"
) # added
_download(model_info["repo_id"], model_info["file_name"])
print_loading_info(model_key, ckpt_path, device)
# If I try to load straight to DML, I get a strange error. So doing in two steps.
checkpoint = torch.load(ckpt_path, map_location=device)
# this is a hack
model_args = checkpoint["model_args"]
if "input_vocab_size" not in model_args:
model_args["input_vocab_size"] = model_args["vocab_size"]
model_args["output_vocab_size"] = model_args["vocab_size"]
del model_args["vocab_size"]
gptconf = ConfigClass(**checkpoint["model_args"])
model = ModelClass(gptconf)
if SUNO_HALF_PRECISION:
model = model.half()
elif SUNO_HALF_BFLOAT16:
model.bfloat16()
state_dict = checkpoint["model"]
# fixup checkpoint
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys())
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")])
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys())
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")])
if len(extra_keys) != 0:
raise ValueError(f"extra keys found: {extra_keys}")
if len(missing_keys) != 0:
raise ValueError(f"missing keys: {missing_keys}")
model.load_state_dict(state_dict, strict=False)
n_params = model.get_num_params()
val_loss = checkpoint["best_val_loss"].item()
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss")
model.eval()
if SUNO_USE_DIRECTML is True:
model.to(dml)
else:
model.to(device)
# del checkpoint, state_dict
del checkpoint, state_dict, model_args, val_loss
_clear_cuda_cache()
if model_type == "text":
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased")
return {
"model": model,
"tokenizer": tokenizer,
}
return model
def preload_models(
text_use_gpu=True,
text_use_small=False,
coarse_use_gpu=True,
coarse_use_small=False,
fine_use_gpu=True,
fine_use_small=False,
codec_use_gpu=True,
force_reload=False,
load_one_model_type=None,
):
"""Load all the necessary models for the pipeline."""
if SUNO_USE_DIRECTML is True:
text_use_gpu = False
coarse_use_gpu = False
fine_use_gpu = False
# What is going on here
logger.debug(
f"USE_SMALL_MODELS = {USE_SMALL_MODELS} GLOBAL_ENABLE_MPS = {GLOBAL_ENABLE_MPS}, OFFLOAD_CPU = {OFFLOAD_CPU}"
)
logger.debug(
f"text_use_gpu = {text_use_gpu}, text_use_small = {text_use_small}, coarse_use_gpu = {coarse_use_gpu}, coarse_use_small = {coarse_use_small}, fine_use_gpu = {fine_use_gpu}, fine_use_small = {fine_use_small}, codec_use_gpu = {codec_use_gpu}, force_reload = {force_reload}"
)
if USE_SMALL_MODELS:
text_use_small = True
coarse_use_small = True
fine_use_small = True
if _grab_best_device() == "cpu" and (
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu
):
warning_string = " -->No GPU being used. Careful, inference might be very slow!"
if SUNO_USE_DIRECTML is True:
warning_string = "-->GPU using DirectML (partial AMD GPU support)"
if GLOBAL_ENABLE_MPS:
warning_string = "-->cpu/mps: Partial Apple Support"
# logger.warning(warning_string)
print(f"{warning_string}")
if load_one_model_type is not None:
if load_one_model_type == "text":
_ = load_model(
model_type="text",
use_gpu=text_use_gpu,
use_small=text_use_small,
force_reload=force_reload,
)
elif load_one_model_type == "coarse":
_ = load_model(
model_type="coarse",
use_gpu=coarse_use_gpu,
use_small=coarse_use_small,
force_reload=force_reload,
)
elif load_one_model_type == "fine":
_ = load_model(
model_type="fine",
use_gpu=fine_use_gpu,
use_small=fine_use_small,
force_reload=force_reload,
)
elif load_one_model_type == "codec":
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)
else:
_ = load_model(
model_type="text",
use_gpu=text_use_gpu,
use_small=text_use_small,
force_reload=force_reload,
)
_ = load_model(
model_type="coarse",
use_gpu=coarse_use_gpu,
use_small=coarse_use_small,
force_reload=force_reload,
)
_ = load_model(
model_type="fine",
use_gpu=fine_use_gpu,
use_small=fine_use_small,
force_reload=force_reload,
)
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload)
|