File size: 16,984 Bytes
c6919c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/steinhaug/bark-infinity/blob/main/notebooks/Bark_Infinity_Long_Form_Audio_Colab.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"source": [
"#@title Connect and check GPU and runtime\n",
"from psutil import virtual_memory\n",
"gpu_info = !nvidia-smi\n",
"gpu_info = '\\n'.join(gpu_info)\n",
"ram_gb = virtual_memory().total / 1e9\n",
"if gpu_info.find('failed') >= 0:\n",
" print('Not connected to a GPU', end=\"\")\n",
"elif gpu_info.find('not found') >= 0:\n",
" print('Not connected to a GPU', end=\"\")\n",
"else:\n",
" print('GPU Connected', end=\"\")\n",
"print(', your runtime has {:.1f} gigabytes of available RAM\\n'.format(ram_gb))\n"
],
"metadata": {
"cellView": "form",
"id": "ogUYjFfhcxTG"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "HJQ4TI0_Qowr"
},
"source": [
"## Setup Notebook, Install dependencies\n",
"<small>Run both cells to install system and needed functions. \n",
"_If Colab for some reason crashes re-run cell 0.2 before contining._</small>\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "r8wG_tIaOV0Q",
"cellView": "form"
},
"outputs": [],
"source": [
"#@title 0.1 - Install system\n",
"from IPython.display import clear_output\n",
"!git clone https://github.com/JonathanFly/bark.git\n",
"%cd bark\n",
"!pip install -r old_setup_files/requirements-pip.txt\n",
"!pip install encodec rich-argparse\n",
"!pip install librosa pydub devtools\n",
"\n",
"#clear_output()\n",
"#print('Cell completed.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jKTvqvVkOwXM",
"cellView": "form"
},
"outputs": [],
"source": [
" #@title 0.2 - Setup required functions and helpers\n",
"import os\n",
"import time\n",
"from bark_infinity import config\n",
"import numpy as np\n",
"\n",
"logger = config.logger\n",
"logger.setLevel(\"WARNING\")\n",
"\n",
"from bark_infinity import generation\n",
"from bark_infinity import api\n",
"\n",
"import rich\n",
"from rich import print\n",
"from rich import pretty\n",
"from rich.pretty import pprint\n",
"from rich import inspect\n",
"\n",
"import librosa\n",
"from pydub import AudioSegment\n",
"import ipywidgets as widgets\n",
"from IPython.display import display, Audio\n",
"from io import BytesIO\n",
"\n",
"# None of this code, just fiddlign with Colab stuff\n",
"# Just to save Colab with outputs and float32 wavs are GIGANTO\n",
"# actually this doesn't work, the iPython widget converts it back to float32? or I messed up\n",
"\n",
"def display_audio_int16_but(audio_arr_segments, file_name, sample_rate=generation.SAMPLE_RATE, width='200px'):\n",
" file_name_label = widgets.Label(value=f\"Playing: {file_name}\")\n",
" file_name_label.layout.width = width\n",
" audio_data_int16 = audio_arr_segments\n",
" if isinstance(audio_data_int16, list):\n",
" audio_data_int16 = np.concatenate(audio_data_int16)\n",
"\n",
" #audio_data_int16 = np.int16(audio_data_int16 * np.iinfo(np.int16).max)\n",
"\n",
"\n",
" audio_widget = Audio(audio_data_int16, rate=sample_rate)\n",
" display(file_name_label, audio_widget)\n",
"\n",
"\n",
"def on_button_click(button):\n",
" audio_data, sample_rate = librosa.load(button.wav_path, sr=None)\n",
" file_name = os.path.basename(button.wav_path)\n",
" display_audio_int16_but(audio_data,file_name, sample_rate)\n",
"\n",
"def display_wav_files(directory, matchType=\".wav\"):\n",
" subdirs, wav_files = [], []\n",
"\n",
" for item in os.listdir(directory):\n",
" item_path = os.path.join(directory, item)\n",
"\n",
" if os.path.isfile(item_path) and item_path.endswith(matchType):\n",
" wav_files.append(item_path)\n",
" elif os.path.isdir(item_path):\n",
" subdirs.append(item_path)\n",
"\n",
" wav_files.sort(key=lambda x: os.path.basename(x))\n",
"\n",
" for wav_file in wav_files:\n",
"\n",
" filename = os.path.basename(wav_file)\n",
" print(f\" {filename}\")\n",
" display( Audio(filename=wav_file, rate=generation.SAMPLE_RATE) )\n",
" #button = widgets.Button(description=f\"Play {filename}\")\n",
" #button.wav_path = wav_file\n",
" #button.on_click(on_button_click)\n",
" #display(button)\n",
"\n",
" for subdir in sorted(subdirs):\n",
" print(f\"<{subdir}>\")\n",
" display_wav_files(subdir, matchType)\n",
"\n",
"def display_mp4_files(directory):\n",
" return display_wav_files(directory, '.mp4')\n"
]
},
{
"cell_type": "markdown",
"source": [
"## 1.0 - Gradio App"
],
"metadata": {
"id": "VbIE0Bv8jxtN"
}
},
{
"cell_type": "code",
"source": [
"#@markdown Run the WebUI with all features.<br>\n",
"#@markdown When loaded click the second link to launch WebUI in another window.\n",
"!python bark_webui.py --share"
],
"metadata": {
"cellView": "form",
"id": "BQfEqnxMpUk1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "OTRtNy1xT1sI"
},
"source": [
"## 2.0 - Manual generation\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LKLe_gYkQ59l"
},
"source": [
"### 2.1 - Choose Bark Models and set Text and Other Generation Options\n",
"\n",
"Required for 3.0 and 4.0"
]
},
{
"cell_type": "code",
"source": [
"# Time to complete cell: ca. 3min\n",
"generation.OFFLOAD_CPU = False # On your home system set to True probably, but Colab GPU should have plenty of memory for all three models\n",
"generation.preload_models() # Optional, will lazy load if not preloaded. First time run in New Colab has to download models"
],
"metadata": {
"id": "QLa2jPOUjSyd"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nTzF9iamO1Tm"
},
"outputs": [],
"source": [
"text = \"\"\"\n",
"Hey, have you heard about this new text-to-audio model called \"Bark\"?\n",
"It's like rain on your wedding day. It's a free ride when you've already paid. It's the good advice that you just didn't take.\n",
"And who would've thought? It figures.\n",
"\n",
"Well, life has a funny way of sneaking up on you. When you think everything's okay and everything's going right.\n",
"And life has a funny way of helping you out. When you think everything's gone wrong.\n",
"And everything blows up in your face.\n",
"\n",
"It's a traffic jam when you're already late. A \"No smoking\" sign on your cigarette break.\n",
"It's like ten thousand spoons when all you need is a knife. It's meeting the man of my dreams.\n",
"And then meeting his beautiful wife.\n",
"\n",
"And isn't it ironic? Don't you think? A little too ironic.\n",
"And yeah, I really do think.\n",
"\"\"\"\n",
"\n",
"# For split set split_character_goal_length and split_character_max_length\n",
"kwargs = {}\n",
"\n",
"kwargs = config.load_all_defaults()\n",
"kwargs['text_prompt'] = text\n",
"kwargs['hoarder_mode'] = True\n",
"kwargs[\"output_dir\"] = 'bark_samples'\n",
"kwargs[\"history_prompt\"] = None\n",
"# kwargs[\"single_starting_seed\"] = None #\n",
"# If you set seed you might want manually call generation.set_seed(-1) after to disable deterministic generation settings\n",
"# I'm not cleaning up after this paramater at the moment and I'm not sure on other side effects\n",
"kwargs[\"stable_mode_interval\"] = 1 # 0 for continous, 2,3,4 for mixed\n",
"kwargs[\"split_character_goal_length\"] = 90\n",
"kwargs[\"split_character_max_length\"] = 130\n",
"# kwargs[\"output_iterations\"] = 1\n",
"kwargs[\"add_silence_between_segments\"] = .025 # See: https://github.com/suno-ai/bark/blob/main/notebooks/long_form_generation.ipynb but not great for songs or stable_mode_interval 0\n",
"kwargs[\"semantic_min_eos_p\"] = 0.05 # 0.20 is default, lower means more likely to stotp\n",
"\n",
"\n",
"# not sure on overall effect so far from these, but for example:\n",
"kwargs[\"semantic_top_k\"] = 50\n",
"kwargs[\"semantic_top_p\"] = 0.95"
]
},
{
"cell_type": "markdown",
"source": [
"### 3.0 First Attempt"
],
"metadata": {
"id": "uuqkchecXnbm"
}
},
{
"cell_type": "markdown",
"source": [
"#### 3.2 Before we run, let's double check out settings"
],
"metadata": {
"id": "6ANm93mHZIa6"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "6SPmYLSoQBBp"
},
"outputs": [],
"source": [
"kwargs[\"dry_run\"] = True # Check how the text is being split, don't actually run the model.\n",
"full_generation_segments, audio_arr_segments, final_filename_will_be, _ = api.generate_audio_long(**kwargs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IEFQgcemX7Ih"
},
"outputs": [],
"source": [
"# that's the output we expect to see, we didn't generate audio yet\n",
"# these text segments look a little small small so let's try this instead\n",
"kwargs[\"split_character_goal_length\"] = 110\n",
"kwargs[\"split_character_max_length\"] = 175\n",
"\n",
"full_generation_segments, audio_arr_segments, final_filename_will_be, _ = api.generate_audio_long(**kwargs)"
]
},
{
"cell_type": "markdown",
"source": [
"#### 3.2 Run Bark"
],
"metadata": {
"id": "iPwaLVKCZNaN"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gnvv0zEZY7vP"
},
"outputs": [],
"source": [
"# These segement sizes look better so now so set dry_run to False to run for real\n",
"# Because we set hoarder_mode we can see the wav files for each segment in the Colab File Manager\n",
"\n",
"kwargs[\"dry_run\"] = False\n",
"full_generation_segments, audio_arr_segments, final_filename_will_be, _ = api.generate_audio_long(**kwargs)"
]
},
{
"cell_type": "markdown",
"source": [
"#### 3.3 Save and list files + playbutton"
],
"metadata": {
"id": "pGeaoAZ6Y9yX"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Qqyw-Uk1axiC"
},
"outputs": [],
"source": [
"print(f\"Final audiofile: {final_filename_will_be}\")\n",
"# (we see many wav because we set hoarder_mode, but one file will be the final product\n",
"# set hoarder_mode=False if you just want the file wav and aren't in explore mode\n",
"\n",
"# or play here\n",
"Audio(np.concatenate(audio_arr_segments), rate=generation.SAMPLE_RATE)\n"
]
},
{
"cell_type": "code",
"source": [
"# because we set hoarder mode we also saved each segement as its own seperate sample with wav\n",
"\n",
"!find \"bark_samples/\" -name \"*.npz\"\n",
"\n",
"display_mp4_files(\"bark_samples/\")"
],
"metadata": {
"id": "yqORA8ajXMrk"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### 4.0 Second Attempt. Can we do better?"
],
"metadata": {
"id": "psbR-0mxW4Dn"
}
},
{
"cell_type": "markdown",
"source": [
"#### 4.1 settings"
],
"metadata": {
"id": "g8vPUGahb0Ar"
}
},
{
"cell_type": "code",
"source": [
"# we used stable_mode_interval = 1, so the history_prompt does not evolve between segments\n",
"# even still the voices that are saved for each segment are one-generation different than the original history prompt\n",
"# this means they are a *little* bit different, and we may prefer one of them over the original\n",
"# for example maybe segment 2 was a little more clear, or had a particular emotion, we could use that segment's version as the speaker\n",
"# in the particular run I'm doing now, that segment ended with a little bit an interesting accent. I'm curious if I can bring that out more.\n",
"\n",
"# (should probably rename the file to something sensible though)\n",
"\n",
"kwargs[\"history_prompt\"] = \"/content/bark/bark_samples/Hey_have_you_he-23-0714-0743-27-SPK-random/002_Its_the_good_ad-23-0714-0744-51-SPK-random.mp4.npz\""
],
"metadata": {
"id": "WQvyiM2sW5xC"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### 4.2 generate"
],
"metadata": {
"id": "t95ZGI6kcNBq"
}
},
{
"cell_type": "code",
"source": [
"kwargs[\"text_prompt\"] = f\"I'm speaker number two. I'm the best speaker. Also I'm a free spirit. Let me evolve my voice with every step. Here's my version.\"\n",
"kwargs[\"text_prompt\"] += text\n",
"kwargs[\"stable_mode_interval\"] = 0\n",
"kwargs[\"output_dir\"] = \"speaker_2_test\"\n",
"kwargs[\"add_silence_between_segments\"] = 0.0 # No silence, fully merge clips\n",
"\n",
"kwargs[\"semantic_min_eos_p\"] = 0.20 # Back to default, let Bark umm and ahh a bit\n",
"full_generation_segments, audio_arr_segments, final_filename_will_be, _ = api.generate_audio_long(**kwargs)\n"
],
"metadata": {
"id": "btp4V86BfAT1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### 4.3 Save and list files + playbutton"
],
"metadata": {
"id": "GrXY5zfscCwi"
}
},
{
"cell_type": "code",
"source": [
"print(f\"Final audiofile: {final_filename_will_be}\")\n",
"Audio(np.concatenate(audio_arr_segments), rate=generation.SAMPLE_RATE)"
],
"metadata": {
"id": "9fthW9oGw-5g"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# this clip probably got really weird after a full segments, fully feedbacking into itself. So kwargs[\"stable_mode_interval\"] = 3 might be a good compromise\n",
"\n",
"display_mp4_files(\"speaker_2_test\")"
],
"metadata": {
"id": "Rlv4CQrfthY8"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"collapsed_sections": [
"HJQ4TI0_Qowr",
"FHlxNCt3QwIr",
"uuqkchecXnbm"
],
"provenance": [],
"machine_shape": "hm",
"gpuType": "T4",
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |