bark / bark_infinity /bark_legacy /bark_perform.py
jamalsenouci's picture
Upload folder using huggingface_hub
c6919c4
import argparse
import numpy as np
from bark import SAMPLE_RATE, generate_audio, preload_models
import os
import datetime
import soundfile as sf
import re
from collections import defaultdict, namedtuple
FileData = namedtuple("FileData", ["filename", "name", "desc"])
SUPPORTED_LANGS = [
("English", "en"),
("German", "de"),
("Spanish", "es"),
("French", "fr"),
("Hindi", "hi"),
("Italian", "it"),
("Japanese", "ja"),
("Korean", "ko"),
("Polish", "pl"),
("Portuguese", "pt"),
("Russian", "ru"),
("Turkish", "tr"),
("Chinese", "zh"),
]
def read_npz_files(directory):
return [f for f in os.listdir(directory) if f.endswith(".npz")]
def extract_name_and_desc(filepath):
with np.load(filepath) as data:
name = data.get('name', '')
desc = data.get('desc', '')
return name, desc
def categorize_files(files, directory):
categorized_files = defaultdict(list)
lang_dict = {code: lang for lang, code in SUPPORTED_LANGS}
for file in files:
name, desc = extract_name_and_desc(os.path.join(directory, file))
match = re.match(r"([a-z]{2}|\w+)_", file)
if match:
prefix = match.group(1)
if prefix in lang_dict:
categorized_files[lang_dict[prefix]].append(FileData(file, name, desc))
else:
categorized_files[prefix.capitalize()].append(FileData(file, name, desc))
else:
categorized_files["Other"].append(FileData(file, name, desc))
return categorized_files
# this is a mess but whatever
def print_speakers_list(categorized_files):
print("Available history prompts:")
for category, files in categorized_files.items():
sorted_files = sorted(files, key=lambda x: (re.search(r"_\w+(_\d+)?\.npz$", x.filename) and re.search(r"_\w+(_\d+)?\.npz$", x.filename).group()[:-4], x.filename))
print(f"\n {category}:")
for file_data in sorted_files:
name_display = f' "{file_data.name}"' if file_data.name else ''
desc_display = f'{file_data.desc}' if file_data.desc else ''
print(f" {file_data.filename[:-4]} {name_display} {desc_display}")
CUR_PATH = os.path.dirname(os.path.abspath(__file__))
history_prompt_dir = os.path.join(CUR_PATH, "bark", "assets", "prompts")
npz_files = read_npz_files(history_prompt_dir)
categorized_files = categorize_files(npz_files, history_prompt_dir)
ALLOWED_PROMPTS = {file[:-4] for file in npz_files}
def estimate_spoken_time(text, wpm=150, time_limit=14):
# Remove text within square brackets
text_without_brackets = re.sub(r'\[.*?\]', '', text)
words = text_without_brackets.split()
word_count = len(words)
time_in_seconds = (word_count / wpm) * 60
if time_in_seconds > time_limit:
return True, time_in_seconds
else:
return False, time_in_seconds
def save_npz_file(filepath, x_semantic_continued, coarse_prompt, fine_prompt, output_dir=None):
np.savez(filepath, semantic_prompt=x_semantic_continued, coarse_prompt=coarse_prompt, fine_prompt=fine_prompt)
print(f"speaker file for this clip saved to {filepath}")
def split_text(text, split_words=0, split_lines=0):
if split_words > 0:
words = text.split()
chunks = [' '.join(words[i:i + split_words]) for i in range(0, len(words), split_words)]
elif split_lines > 0:
lines = [line for line in text.split('\n') if line.strip()]
chunks = ['\n'.join(lines[i:i + split_lines]) for i in range(0, len(lines), split_lines)]
else:
chunks = [text]
return chunks
def save_audio_to_file(filepath, audio_array, sample_rate=24000, format='WAV', subtype='PCM_16', output_dir=None):
sf.write(filepath, audio_array, sample_rate, format=format, subtype=subtype)
print(f"Saved audio to {filepath}")
def gen_and_save_audio(text_prompt, history_prompt=None, text_temp=0.7, waveform_temp=0.7, filename="", output_dir="bark_samples", split_by_words=0, split_by_lines=0, stable_mode=False, confused_travolta_mode=False, iteration=1):
def generate_unique_filename(base_filename):
name, ext = os.path.splitext(base_filename)
unique_filename = base_filename
counter = 1
while os.path.exists(unique_filename):
unique_filename = f"{name}_{counter}{ext}"
counter += 1
return unique_filename
orig_history_prompt = history_prompt
saveit = True if history_prompt is None else False
if iteration == 1:
print(f"Full Prompt: {text_prompt}")
if args.history_prompt:
print(f" Using speaker: {history_prompt}")
else:
print(f" No speaker. Randomly generating a speaker.")
text_chunks = split_text(text_prompt, split_by_words, split_by_lines)
base = None
npzbase = None
audio_arr_chunks = []
# Should output each audio chunk to disk midway so you at least a partial output if a long process crashes.
for i, chunk in enumerate(text_chunks):
print(f"Processing chunk {i + 1}/{len(text_chunks)}: {chunk}")
longer_than_14_seconds, estimated_time = estimate_spoken_time(chunk)
print(f"Current text chunk ballpark estimate: {estimated_time:.2f} seconds.")
if longer_than_14_seconds:
print(f"Text Prompt could be too long, might want to try a shorter one or try splitting tighter.")
audio_array, x = generate_audio(chunk, history_prompt, text_temp=text_temp, waveform_temp=waveform_temp, base=base, confused_travolta_mode=confused_travolta_mode)
if saveit is True and npzbase is None:
npzbase = x
if stable_mode:
base = x if (base is None and history_prompt is None) else base
else:
base = x
history_prompt = None
audio_arr_chunks.append(audio_array)
concatenated_audio_arr = np.concatenate(audio_arr_chunks)
if not filename:
date_str = datetime.datetime.now().strftime("%Y-%m-%d-%H")
truncated_text = text_prompt.replace("WOMAN:", "").replace("MAN:", "")[:15].strip().replace(" ", "_")
filename = f"{truncated_text}-history_prompt-{orig_history_prompt}-text_temp-{text_temp}-waveform_temp-{waveform_temp}-{date_str}.wav"
filename = generate_unique_filename(filename)
# Create output directory if it doesn't exist
if output_dir:
os.makedirs(output_dir, exist_ok=True)
filepath = os.path.join(output_dir, filename)
else:
filepath = filename
i = 1
name, ext = os.path.splitext(filepath)
while os.path.exists(filepath):
filepath = f"{name}_{i}{ext}"
i += 1
if saveit is True:
save_npz_file(f'{filepath}.npz', npzbase[0], npzbase[1], npzbase[2], output_dir=output_dir)
save_audio_to_file(filepath, concatenated_audio_arr, SAMPLE_RATE, output_dir=output_dir)
# If there's no text_prompt passed on the command line, process this list instead.
# If you use an entir song, make sure you set --split_by_lines.
text_prompts = []
text_prompt = """
♪ We're no strangers to love ♪
♪ You know the rules and so do I (do I) ♪
♪ A full commitment's what I'm thinking of ♪
♪ You wouldn't get this from any other guy ♪
"""
text_prompts.append(text_prompt)
text_prompt = """
In the beginning the Universe was created. This has made a lot of people very angry and been widely regarded as a bad move.
"""
text_prompts.append(text_prompt)
text_prompt = """
A common mistake that people make when trying to design something completely foolproof is to underestimate the ingenuity of complete fools.
"""
text_prompts.append(text_prompt)
def main(args):
if args.list_speakers:
print_speakers_list(categorized_files)
else:
if args.text_prompt:
text_prompts_to_process = [args.text_prompt]
elif args.prompt_file:
with open(args.prompt_file, "r", encoding="utf-8") as f:
if args.prompt_file_separator:
text_prompts_to_process = f.read().split(args.prompt_file_separator)
else:
text_prompts_to_process = [f.read()]
text_prompts_to_process = [prompt for prompt in text_prompts_to_process if prompt.strip()]
print(f"Processing prompts from file: {args.prompt_file}")
print(f"Number of prompts after splitting: {len(text_prompts_to_process)}")
else:
print("No text prompt provided. Using the prompts defined in this python file instead.")
text_prompts_to_process = text_prompts
if args.history_prompt:
history_prompt = args.history_prompt
else:
history_prompt = None
text_temp = args.text_temp if args.text_temp else 0.7
waveform_temp = args.waveform_temp if args.waveform_temp else 0.7
stable_mode = args.stable_mode if args.stable_mode else False
confused_travolta_mode = args.confused_travolta_mode if args.confused_travolta_mode else False
filename = args.filename if args.filename else ""
output_dir = args.output_dir if args.output_dir else "bark_samples"
print("Loading Bark models...")
if args.use_smaller_models:
print("Using smaller models.")
preload_models(use_smaller_models=True)
else:
preload_models()
print("Models loaded.")
for idx, prompt in enumerate(text_prompts_to_process, start=1):
print(f"Processing prompt {idx} of {len(text_prompts_to_process)}:")
split_by_words = args.split_by_words if args.split_by_words else 0
split_by_lines = args.split_by_lines if args.split_by_lines else 0
if args.iterations > 1:
for iteration in range(1, args.iterations + 1):
print(f"Iteration {iteration} of {args.iterations}.")
gen_and_save_audio(prompt, history_prompt, text_temp, waveform_temp, filename, output_dir, split_by_words, split_by_lines, stable_mode, confused_travolta_mode, iteration=iteration)
else:
gen_and_save_audio(prompt, history_prompt, text_temp, waveform_temp, filename, output_dir, split_by_words, split_by_lines, stable_mode, confused_travolta_mode)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="""
(This grew into a bit more than a BARK CLI wrapper.)
WELCOME TO BARK INFINITY
INFINITY VOICES
Discover cool new voices, save them, share them.
Every audio clip saves a speaker.npz file with voice.
To reuse a voice, move the generated speaker.npz file (named the same as the .wav file)
to the "prompts" directory inside "bark" where all the other .npz files are.
INFINITY LENGTH
Any length prompt and audio clips.
Sometimes the final result is seemless, sometimes it's stable. (But usually not both!)
CONFUSED TRAVOLTA MODE
Not super useful but very fun.
--use_smaller_models for faster generation even on low VRAM gpus.
install this first: pip install soundfile
Example: python bark_perform.py --text_prompt "It is a mistake to think you can solve any major problems just with potatoes... (and full page more of text)" --split_by_words 35
BARK INFINITY is possible because Bark is such an amazingly simple and powerful model that even I can could poke around easily.
For music I recommend using the --split_by_lines and making sure you use a multiline string as input.
You'll generally get better results if you manually split your text, which I neglected to provide an easy way to do (seperate token?).
""", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--text_prompt", help="Text prompt. If not provided, a set of default prompts will be used defined in this file.")
parser.add_argument("--history_prompt", default=None, help="Optional. Choose a speaker from the list of languages: . Use --list_speakers to see all available options.")
parser.add_argument("--text_temp", type=float, help="Text temperature. Default is 0.7.")
parser.add_argument("--waveform_temp", type=float, help="Waveform temperature. Default is 0.7.")
parser.add_argument("--filename", help="Output filename. If not provided, a unique filename will be generated based on the text prompt and other parameters.")
parser.add_argument("--output_dir", help="Output directory. Default is 'bark_samples'.")
parser.add_argument("--list_speakers", action="store_true", help="List all preset speaker options instead of generating audio.")
parser.add_argument("--use_smaller_models", action="store_true", help="Use for GPUS with less than 10GB of memory, or for more speed.")
parser.add_argument("--iterations", type=int, default=1, help="Number of iterations. Default is 1.")
parser.add_argument("--split_by_words", type=int, default=0, help="Breaks text_prompt into <14 second audio clips every x words")
parser.add_argument("--split_by_lines", type=int, default=0, help="Breaks text_prompt into <14 second audio clips every x lines")
parser.add_argument("--stable_mode", action="store_true", help="Choppier and not as natural sounding, but much more stable for very long audio files.")
parser.add_argument("--confused_travolta_mode", default=False, action="store_true", help="Just for fun. Try it and you'll understand.")
parser.add_argument("--prompt_file", help="Optional. The path to a file containing the text prompt. Overrides the --text_prompt option if provided.")
parser.add_argument("--prompt_file_separator", help="Optional. The separator used to split the content of the prompt_file into multiple text prompts.")
args = parser.parse_args()
main(args)