Spaces:
Runtime error
Runtime error
File size: 11,793 Bytes
5ee835a b130120 5ee835a 4c12043 abca836 36d15e8 abca836 5ee835a 4c12043 5ee835a 845b15a 5ee835a 845b15a 5ee835a b130120 cbb3b58 5ee835a 9482092 83c1a5b 9482092 83c1a5b 9482092 4c12043 9482092 b130120 5ee835a 83c1a5b 9482092 5ee835a 9482092 83c1a5b 9482092 4c12043 9482092 83c1a5b 9482092 83c1a5b 5ee835a 9482092 83c1a5b 4c12043 cbb3b58 5ee835a 845b15a 5ee835a 845b15a 5ee835a 845b15a 5ee835a f8ba1d9 5ee835a cbb3b58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr
from duckduckgo_search import DDGS
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from smolagents.tools import Tool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
VisitTool,
SimpleTextBrowser,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm
from smolagents import (
CodeAgent,
HfApiModel,
LiteLLMModel,
Model,
ToolCallingAgent,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
import os
# With this updated version:
#from huggingface_hub import configure_http_backend
#from huggingface_hub.http import httpx_backend # Explicit backend import
#configure_http_backend(factory=httpx_backend.factory) # Correct argument [huggingface.co](https://huggingface.co/docs/huggingface_hub/en/guides/http#http-backends)
# Set environment variables before other imports
os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "300" # 5 minute timeout
os.environ["HF_HUB_OFFLINE"] = "0" # Disable offline mode
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
SET = "validation"
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
### LOAD EVALUATION DATASET
eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET]
eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"})
def preprocess_file_paths(row):
if len(row["file_name"]) > 0:
row["file_name"] = f"data/gaia/{SET}/" + row["file_name"]
return row
eval_ds = eval_ds.map(preprocess_file_paths)
eval_df = pd.DataFrame(eval_ds)
print("Loaded evaluation dataset:")
print(eval_df["task"].value_counts())
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
# Custom OpenAI configuration
model = LiteLLMModel(
"openai/custom-gpt",
custom_role_conversions=custom_role_conversions,
api_key=os.getenv("OPENAI_API_KEY"),
api_base=os.getenv("CUSTOM_OPENAI_API_BASE"),
temperature=0.1,
frequency_penalty=0.2,
messages=[
{
"role": "system",
"content": """ALWAYS format code responses with:
```py
# Your code
```
Use markdown for text and strict triple-backtick for code blocks"""
}
]
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
class DuckDuckGoSearchTool(Tool):
"""Search tool using DuckDuckGo"""
name = "web_search"
description = "Search the web using DuckDuckGo (current information)"
inputs = {
"query": {
"type": "string",
"description": "Search query terms",
"required": True
}
}
output_type = "string"
def __init__(self, max_results: int = 5):
super().__init__()
self.max_results = max_results
def forward(self, query: str) -> str: # <-- Correct method name and signature
"""Execute DuckDuckGo search"""
try:
with DDGS(timeout=30) as ddgs:
results = list(ddgs.text(
keywords=query,
max_results=self.max_results,
region='wt-wt'
))
return "\n\n".join([
f"β’ {res['title']}\n URL: {res['href']}\n {res['body'][:200]}..."
for res in results
])
except Exception as e:
return f"Search error: {str(e)}"
WEB_TOOLS = [
DuckDuckGoSearchTool(max_results=5),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
from smolagents.parsers import CodeParser
import re
class RobustCodeParser(CodeParser):
def extract_code(self, response: str) -> str:
try:
return super().extract_code(response)
except ValueError:
# Fallback pattern matching
code_match = re.search(r"```(?:python|py)?\n(.*?)\n```", response, re.DOTALL)
if code_match:
return code_match.group(1).strip()
raise ValueError(f"Invalid code format in response:\n{response}")
# Replace in agent creation:
# Agent creation in a factory function
def create_agent():
return CodeAgent(
model=model,
tools=[visualizer] + WEB_TOOLS,
max_steps=7, # Increased from 5
verbosity_level=3, # Higher debug info
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=3,
code_block_delimiters=("```py", "```"), # Explicit code formatting [github.com]
code_clean_pattern=r"^[\s\S]*?(```py\n[\s\S]*?\n```)", # Improved regex
enforce_code_format=True,
parser=RobustCodeParser() # Explicitly use RobustCodeParser here!
)
document_inspection_tool = TextInspectorTool(model, 20000)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
if 'agent' not in session_state:
session_state['agent'] = create_agent()
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
original_name = os.path.basename(file.name)
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
)
def launch(self, **kwargs):
with gr.Blocks(theme="ocean", fill_height=True) as demo:
gr.Markdown("""# Open Deep Research - AI Agent Interface
Advanced question answering using DuckDuckGo search and custom AI models""")
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
chatbot = gr.Chatbot(
label="Research Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(lines=1, label="Enter your question")
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(
self.interact_with_agent,
[stored_messages, chatbot, session_state],
[chatbot]
)
demo.launch(debug=True, share=False, **kwargs)
if __name__ == "__main__":
GradioUI().launch() |