qdqd's picture
Create app.py
5ee835a verified
raw
history blame
10.3 kB
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr
from duckduckgo_search import DDGS
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
VisitTool,
SimpleTextBrowser,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm
from smolagents import (
CodeAgent,
HfApiModel,
LiteLLMModel,
Model,
ToolCallingAgent,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
SET = "validation"
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
### LOAD EVALUATION DATASET
eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET]
eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"})
def preprocess_file_paths(row):
if len(row["file_name"]) > 0:
row["file_name"] = f"data/gaia/{SET}/" + row["file_name"]
return row
eval_ds = eval_ds.map(preprocess_file_paths)
eval_df = pd.DataFrame(eval_ds)
print("Loaded evaluation dataset:")
print(eval_df["task"].value_counts())
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
# Custom OpenAI configuration
model = LiteLLMModel(
"openai/custom-gpt",
custom_role_conversions=custom_role_conversions,
api_key=os.getenv("OPENAI_API_KEY"),
api_base=os.getenv("CUSTOM_OPENAI_API_BASE"),
temperature=0.1,
frequency_penalty=0.2
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
class DuckDuckGoSearchTool:
"""Search tool using DuckDuckGo"""
name = "web_search"
description = "Search the web using DuckDuckGo (current information)"
def __init__(self, max_results: int = 5):
self.max_results = max_results
def run(self, query: str) -> str:
"""Return formatted search results (snippets from webpages)"""
try:
web_results = []
with DDGS() as ddgs:
for result in ddgs.text(query, max_results=self.max_results):
web_results.append({
'title': result['title'],
'url': result['href'],
'content': result['body']
})
formatted_results = []
for idx, res in enumerate(web_results[:self.max_results], 1):
formatted_results.append(
f"[{idx}] {res['title']}\n"
f"URL: {res['url']}\n"
f"Content: {res['content'][:500]}{'...' if len(res['content']) > 500 else ''}"
)
return "\n\n".join(formatted_results)
except Exception as e:
return f"Search error: {str(e)}"
WEB_TOOLS = [
DuckDuckGoSearchTool(max_results=5),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
# Agent creation in a factory function
def create_agent():
"""Creates a fresh agent instance for each session"""
return CodeAgent(
model=model,
tools=[visualizer] + WEB_TOOLS,
max_steps=5,
verbosity_level=2,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
)
document_inspection_tool = TextInspectorTool(model, 20000)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
if 'agent' not in session_state:
session_state['agent'] = create_agent()
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
original_name = os.path.basename(file.name)
sanitized_name = re.sub(r"[^\w\-.]", "_", original_name)
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
)
def launch(self, **kwargs):
with gr.Blocks(theme="ocean", fill_height=True) as demo:
gr.Markdown("""# Open Deep Research - AI Agent Interface
Advanced question answering using DuckDuckGo search and custom AI models""")
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
chatbot = gr.Chatbot(
label="Research Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(lines=1, label="Enter your question")
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(
self.interact_with_agent,
[stored_messages, chatbot, session_state],
[chatbot]
)
demo.launch(debug=True, share=True, **kwargs)
if __name__ == "__main__":
GradioUI().launch()