import argparse import json import os import threading from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime from pathlib import Path from typing import List, Optional import datasets import pandas as pd from dotenv import load_dotenv from huggingface_hub import login import gradio as gr from duckduckgo_search import DDGS from scripts.reformulator import prepare_response from scripts.run_agents import ( get_single_file_description, get_zip_description, ) from scripts.text_inspector_tool import TextInspectorTool from smolagents.tools import Tool from scripts.text_web_browser import ( ArchiveSearchTool, FinderTool, FindNextTool, PageDownTool, PageUpTool, VisitTool, SimpleTextBrowser, ) from scripts.visual_qa import visualizer from tqdm import tqdm from smolagents import ( CodeAgent, HfApiModel, LiteLLMModel, Model, ToolCallingAgent, ) from smolagents.agent_types import AgentText, AgentImage, AgentAudio from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types AUTHORIZED_IMPORTS = [ "requests", "zipfile", "os", "pandas", "numpy", "sympy", "json", "bs4", "pubchempy", "xml", "yahoo_finance", "Bio", "sklearn", "scipy", "pydub", "io", "PIL", "chess", "PyPDF2", "pptx", "torch", "datetime", "fractions", "csv", ] import os # With this updated version: #from huggingface_hub import configure_http_backend #from huggingface_hub.http import httpx_backend # Explicit backend import #configure_http_backend(factory=httpx_backend.factory) # Correct argument [huggingface.co](https://huggingface.co/docs/huggingface_hub/en/guides/http#http-backends) # Set environment variables before other imports os.environ["HF_HUB_DOWNLOAD_TIMEOUT"] = "300" # 5 minute timeout os.environ["HF_HUB_OFFLINE"] = "0" # Disable offline mode load_dotenv(override=True) login(os.getenv("HF_TOKEN")) append_answer_lock = threading.Lock() SET = "validation" custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"} ### LOAD EVALUATION DATASET eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET] eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"}) def preprocess_file_paths(row): if len(row["file_name"]) > 0: row["file_name"] = f"data/gaia/{SET}/" + row["file_name"] return row eval_ds = eval_ds.map(preprocess_file_paths) eval_df = pd.DataFrame(eval_ds) print("Loaded evaluation dataset:") print(eval_df["task"].value_counts()) user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0" BROWSER_CONFIG = { "viewport_size": 1024 * 5, "downloads_folder": "downloads_folder", "request_kwargs": { "headers": {"User-Agent": user_agent}, "timeout": 300, }, } os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True) # Custom OpenAI configuration model = LiteLLMModel( "openai/custom-gpt", custom_role_conversions=custom_role_conversions, api_key=os.getenv("OPENAI_API_KEY"), api_base=os.getenv("CUSTOM_OPENAI_API_BASE"), temperature=0.1, frequency_penalty=0.2, messages=[ { "role": "system", "content": """ALWAYS format code responses with: ```py # Your code ``` Use markdown for text and strict triple-backtick for code blocks""" } ] ) text_limit = 20000 ti_tool = TextInspectorTool(model, text_limit) browser = SimpleTextBrowser(**BROWSER_CONFIG) class DuckDuckGoSearchTool(Tool): """Search tool using DuckDuckGo""" name = "web_search" description = "Search the web using DuckDuckGo (current information)" inputs = { "query": { "type": "string", "description": "Search query terms", "required": True } } output_type = "string" def __init__(self, max_results: int = 5): super().__init__() self.max_results = max_results def forward(self, query: str) -> str: # <-- Correct method name and signature """Execute DuckDuckGo search""" try: with DDGS(timeout=30) as ddgs: results = list(ddgs.text( keywords=query, max_results=self.max_results, region='wt-wt' )) return "\n\n".join([ f"• {res['title']}\n URL: {res['href']}\n {res['body'][:200]}..." for res in results ]) except Exception as e: return f"Search error: {str(e)}" WEB_TOOLS = [ DuckDuckGoSearchTool(max_results=5), VisitTool(browser), PageUpTool(browser), PageDownTool(browser), FinderTool(browser), FindNextTool(browser), ArchiveSearchTool(browser), TextInspectorTool(model, text_limit), ] from smolagents.parsers import CodeParser import re class RobustCodeParser(CodeParser): def extract_code(self, response: str) -> str: try: return super().extract_code(response) except ValueError: # Fallback pattern matching code_match = re.search(r"```(?:python|py)?\n(.*?)\n```", response, re.DOTALL) if code_match: return code_match.group(1).strip() raise ValueError(f"Invalid code format in response:\n{response}") # Replace in agent creation: # Agent creation in a factory function def create_agent(): return CodeAgent( model=model, tools=[visualizer] + WEB_TOOLS, max_steps=7, # Increased from 5 verbosity_level=3, # Higher debug info additional_authorized_imports=AUTHORIZED_IMPORTS, planning_interval=3, code_block_delimiters=("```py", "```"), # Explicit code formatting [github.com] code_clean_pattern=r"^[\s\S]*?(```py\n[\s\S]*?\n```)", # Improved regex enforce_code_format=True, parser=RobustCodeParser() # Explicitly use RobustCodeParser here! ) document_inspection_tool = TextInspectorTool(model, 20000) def stream_to_gradio( agent, task: str, reset_agent_memory: bool = False, additional_args: Optional[dict] = None, ): """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages.""" for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args): for message in pull_messages_from_step( step_log, ): yield message final_answer = step_log # Last log is the run's final_answer final_answer = handle_agent_output_types(final_answer) if isinstance(final_answer, AgentText): yield gr.ChatMessage( role="assistant", content=f"**Final answer:**\n{final_answer.to_string()}\n", ) elif isinstance(final_answer, AgentImage): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "image/png"}, ) elif isinstance(final_answer, AgentAudio): yield gr.ChatMessage( role="assistant", content={"path": final_answer.to_string(), "mime_type": "audio/wav"}, ) else: yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}") class GradioUI: """A one-line interface to launch your agent in Gradio""" def __init__(self, file_upload_folder: str | None = None): self.file_upload_folder = file_upload_folder if self.file_upload_folder is not None: if not os.path.exists(file_upload_folder): os.mkdir(file_upload_folder) def interact_with_agent(self, prompt, messages, session_state): if 'agent' not in session_state: session_state['agent'] = create_agent() messages.append(gr.ChatMessage(role="user", content=prompt)) yield messages for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False): messages.append(msg) yield messages yield messages def upload_file( self, file, file_uploads_log, allowed_file_types=[ "application/pdf", "application/vnd.openxmlformats-officedocument.wordprocessingml.document", "text/plain", ], ): if file is None: return gr.Textbox("No file uploaded", visible=True), file_uploads_log try: mime_type, _ = mimetypes.guess_type(file.name) except Exception as e: return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log if mime_type not in allowed_file_types: return gr.Textbox("File type disallowed", visible=True), file_uploads_log original_name = os.path.basename(file.name) sanitized_name = re.sub(r"[^\w\-.]", "_", original_name) type_to_ext = {} for ext, t in mimetypes.types_map.items(): if t not in type_to_ext: type_to_ext[t] = ext sanitized_name = sanitized_name.split(".")[:-1] sanitized_name.append("" + type_to_ext[mime_type]) sanitized_name = "".join(sanitized_name) file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name)) shutil.copy(file.name, file_path) return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path] def log_user_message(self, text_input, file_uploads_log): return ( text_input + ( f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}" if len(file_uploads_log) > 0 else "" ), "", ) def launch(self, **kwargs): with gr.Blocks(theme="ocean", fill_height=True) as demo: gr.Markdown("""# Open Deep Research - AI Agent Interface Advanced question answering using DuckDuckGo search and custom AI models""") session_state = gr.State({}) stored_messages = gr.State([]) file_uploads_log = gr.State([]) chatbot = gr.Chatbot( label="Research Agent", type="messages", avatar_images=( None, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png", ), resizeable=True, scale=1, ) if self.file_upload_folder is not None: upload_file = gr.File(label="Upload a file") upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False) upload_file.change( self.upload_file, [upload_file, file_uploads_log], [upload_status, file_uploads_log], ) text_input = gr.Textbox(lines=1, label="Enter your question") text_input.submit( self.log_user_message, [text_input, file_uploads_log], [stored_messages, text_input], ).then( self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot] ) demo.launch(debug=True, share=False, **kwargs) if __name__ == "__main__": GradioUI().launch()