Spaces:
Running
Running
File size: 5,500 Bytes
efb5688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
from typing import List
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
from langchain_community.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.chroma import Chroma
from langchain_core.runnables.base import RunnableSequence
from langchain_core.vectorstores import VectorStoreRetriever
from dotenv import load_dotenv
load_dotenv()
HF_API_KEY = os.environ["HF_API_KEY"]
class MistralOutputParser(StrOutputParser):
"""OutputParser that parser llm result from Mistral API"""
def parse(self, text: str) -> str:
"""
Returns the input text with no changes.
Args:
text (str): text to parse
Returns:
str: parsed text
"""
return text.split("[/INST]")[-1].strip()
def load_pdf(
document_path: str,
mode: str = "single",
strategy: str = "fast",
chunk_size: int = 500,
chunk_overlap: int = 0,
) -> List[str]:
"""
Load a pdf document and split it into chunks of text.
Args:
document_path (Path): path to the pdf document
mode (str, optional): mode of the loader. Defaults to "single".
strategy (str, optional): strategy of the loader. Defaults to "fast".
chunk_size (int, optional): size of the chunks. Defaults to 500.
chunk_overlap (int, optional): overlap of the chunks. Defaults to 0.
Returns:
List[str]: list of chunks of text
"""
# Load the document
loader = UnstructuredPDFLoader(
document_path,
mode=mode,
strategy=strategy,
)
docs = loader.load()
# Split the document into chunks of text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
all_splits = text_splitter.split_documents(docs)
return all_splits
def store_vector(all_splits: List[str]) -> VectorStoreRetriever:
"""
Store vector of each chunk of text.
Args:
all_splits (List[str]): list of chunks of text
Returns:
VectorStoreRetriever: retriever that can be used to retrieve the vector of a chunk of text
"""
# Use the HuggingFace distilbert-base-uncased model to embed the text
embeddings_model_url = (
"https://api-inference.huggingface.co/models/distilbert-base-uncased"
)
embeddings = HuggingFaceInferenceAPIEmbeddings(
endpoint_url=embeddings_model_url,
api_key=HF_API_KEY,
)
# Store the embeddings of each chunk of text into ChromaDB
vector_store = Chroma.from_documents(all_splits, embeddings)
retriever = vector_store.as_retriever()
return retriever
def generate_mistral_rag_prompt() -> ChatPromptTemplate:
"""
Generate a prompt for Mistral API wiht RAG.
Returns:
ChatPromptTemplate: prompt for Mistral API
"""
template = "<s>[INST] {context} {prompt} [/INST]"
prompt_template = ChatPromptTemplate.from_template(template)
return prompt_template
def generate_mistral_simple_prompt() -> ChatPromptTemplate:
"""
Generate a simple prompt for Mistral without RAG.
Returns:
ChatPromptTemplate: prompt for Mistral API
"""
template = "[INST] {prompt} [/INST]"
prompt_template = ChatPromptTemplate.from_template(template)
return prompt_template
def generate_rag_chain(retriever: VectorStoreRetriever = None) -> RunnableSequence:
"""
Generate a RAG chain with Mistral API and ChromaDB.
Args:
Retriever (VectorStoreRetriever): retriever that can be used to retrieve the vector of a chunk of text
Returns:
RunnableSequence: RAG chain
"""
# Use the Mistral Free prototype API
mistral_url = (
"https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
)
model_endpoint = HuggingFaceEndpoint(
endpoint_url=mistral_url,
huggingfacehub_api_token=HF_API_KEY,
task="text2text-generation",
)
# Use a custom output parser
output_parser = MistralOutputParser()
# If no retriever is provided, use a simple prompt
if retriever is None:
entry = {"prompt": RunnablePassthrough()}
return entry | generate_mistral_simple_prompt() | model_endpoint | output_parser
# If a retriever is provided, use a RAG prompt
retrieval = {"context": retriever, "prompt": RunnablePassthrough()}
return retrieval | generate_mistral_rag_prompt() | model_endpoint | output_parser
def load_multiple_pdf(document_paths: List[str]) -> List[str]:
"""
Load multiple pdf documents and split them into chunks of text.
Args:
document_paths (List[str]): list of paths to the pdf documents
Returns:
List[str]: list of chunks of text
"""
docs = []
for document_path in document_paths:
loader = UnstructuredPDFLoader(
document_path,
mode="single",
strategy="fast",
)
docs.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=25)
all_splits = text_splitter.split_documents(docs)
return all_splits
|