Spaces:
Running
Running
File size: 3,201 Bytes
1af34cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
title: NX Denoise
emoji: 🐢
colorFrom: purple
colorTo: blue
sdk: docker
pinned: false
license: apache-2.0
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
## NX Denoise
### datasets
```text
AISHELL (15G)
https://openslr.trmal.net/resources/33/
AISHELL-3 (19G)
http://www.openslr.org/93/
DNS3
https://github.com/microsoft/DNS-Challenge/blob/master/download-dns-challenge-3.sh
噪音数据来源于 DEMAND, FreeSound, AudioSet.
MS-SNSD
https://github.com/microsoft/MS-SNSD
噪音数据来源于 DEMAND, FreeSound.
MUSAN
https://www.openslr.org/17/
其中包含 music, noise, speech.
music 是一些纯音乐, noise 包含 free-sound, sound-bible, sound-bible部分也许可以做为补充部分.
总的来说, 有用的不部不多, 可能噪音数据仍然需要自己收集为主, 更加可靠.
CHiME-4
https://www.chimechallenge.org/challenges/chime4/download.html
freesound
https://freesound.org/
AudioSet
https://research.google.com/audioset/index.html
```
### ### 创建训练容器
```text
在容器中训练模型,需要能够从容器中访问到 GPU,参考:
https://hub.docker.com/r/ollama/ollama
docker run -itd \
--name nx_denoise \
--network host \
--gpus all \
--privileged \
--ipc=host \
-v /data/tianxing/HuggingDatasets/nx_noise/data:/data/tianxing/HuggingDatasets/nx_noise/data \
-v /data/tianxing/PycharmProjects/nx_denoise:/data/tianxing/PycharmProjects/nx_denoise \
python:3.12
查看GPU
nvidia-smi
watch -n 1 -d nvidia-smi
```
```text
在容器中访问 GPU
参考:
https://blog.csdn.net/footless_bird/article/details/136291344
步骤:
# 安装
yum install -y nvidia-container-toolkit
# 编辑文件 /etc/docker/daemon.json
cat /etc/docker/daemon.json
{
"data-root": "/data/lib/docker",
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime",
"runtimeArgs": []
}
},
"registry-mirrors": [
"https://docker.m.daocloud.io",
"https://dockerproxy.com",
"https://docker.mirrors.ustc.edu.cn",
"https://docker.nju.edu.cn"
]
}
# 重启 docker
systemctl restart docker
systemctl daemon-reload
# 测试容器内能否访问 GPU.
docker run --gpus all python:3.12-slim nvidia-smi
# 通过这种方式启动容器, 在容器中, 可以查看到 GPU. 但是容器中没有 GPU驱动 nvidia-smi 不工作.
docker run -it --privileged python:3.12-slim /bin/bash
apt update
apt install -y pciutils
lspci | grep -i nvidia
#00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)
# 网上看的是这种启动容器的方式, 但是进去后仍然是 nvidia-smi 不工作.
docker run \
--device /dev/nvidia0:/dev/nvidia0 \
--device /dev/nvidiactl:/dev/nvidiactl \
--device /dev/nvidia-uvm:/dev/nvidia-uvm \
-v /usr/local/nvidia:/usr/local/nvidia \
-it --privileged python:3.12-slim /bin/bash
# 这种方式进入容器, nvidia-smi 可以工作. 应该关键是 --gpus all 参数.
docker run -itd --gpus all --name open_unsloth python:3.12-slim /bin/bash
docker run -itd --gpus all --name Qwen2-7B-Instruct python:3.12-slim /bin/bash
```
|