File size: 10,105 Bytes
1af34cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ded3e4
1af34cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
docker build -t denoise:v20250609_1919 .
docker stop denoise_7865 && docker rm denoise_7865
docker run -itd \
--name denoise_7865 \
--restart=always \
--network host \
-e server_port=7865 \
-e hf_token=hf_coRVvzwAzCwGHKRK***********EX \
denoise:v20250609_1919 /bin/bash

"""
import argparse
import json
from functools import lru_cache
import logging
from pathlib import Path
import platform
import shutil
import tempfile
import time
from typing import Dict, Tuple
import zipfile

import gradio as gr
from huggingface_hub import snapshot_download
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np

import log
from project_settings import environment, project_path, log_directory
from toolbox.os.command import Command
from toolbox.torchaudio.models.dfnet.inference_dfnet import InferenceDfNet
from toolbox.torchaudio.models.dfnet2.inference_dfnet2 import InferenceDfNet2
from toolbox.torchaudio.models.dtln.inference_dtln import InferenceDTLN
from toolbox.torchaudio.models.frcrn.inference_frcrn import InferenceFRCRN
from toolbox.torchaudio.models.mpnet.inference_mpnet import InferenceMPNet


log.setup_size_rotating(log_directory=log_directory)

logger = logging.getLogger("main")


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--examples_dir",
        # default=(project_path / "data").as_posix(),
        default=(project_path / "data/examples").as_posix(),
        type=str
    )
    parser.add_argument(
        "--models_repo_id",
        default="qgyd2021/cc_denoise",
        type=str
    )
    parser.add_argument(
        "--trained_model_dir",
        default=(project_path / "trained_models").as_posix(),
        type=str
    )
    parser.add_argument(
        "--hf_token",
        default=environment.get("hf_token"),
        type=str,
    )
    parser.add_argument(
        "--server_port",
        default=environment.get("server_port", 7860),
        type=int
    )

    args = parser.parse_args()
    return args


def shell(cmd: str):
    return Command.popen(cmd)


def get_infer_cls_by_model_name(model_name: str):
    if model_name.__contains__("dtln"):
        infer_cls = InferenceDTLN
    elif model_name.__contains__("dfnet2"):
        infer_cls = InferenceDfNet2
    elif model_name.__contains__("frcrn"):
        infer_cls = InferenceFRCRN
    elif model_name.__contains__("mpnet"):
        infer_cls = InferenceMPNet
    else:
        raise AssertionError
    return infer_cls


denoise_engines: Dict[str, dict] = None


@lru_cache(maxsize=1)
def load_denoise_model(infer_cls, **kwargs):
    infer_engine = infer_cls(**kwargs)

    return infer_engine


def generate_spectrogram(signal: np.ndarray, sample_rate: int = 8000, title: str = "Spectrogram"):
    mag = np.abs(librosa.stft(signal))
    # mag_db = librosa.amplitude_to_db(mag, ref=np.max)
    mag_db = librosa.amplitude_to_db(mag, ref=20)

    plt.figure(figsize=(10, 4))
    librosa.display.specshow(mag_db, sr=sample_rate)
    plt.title(title)

    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    plt.savefig(temp_file.name, bbox_inches="tight")
    plt.close()
    return temp_file.name


def when_click_denoise_button(noisy_audio_file_t = None, noisy_audio_microphone_t = None, engine: str = None):
    if noisy_audio_file_t is None and noisy_audio_microphone_t is None:
        raise gr.Error(f"audio file and microphone is null.")
    if noisy_audio_file_t is not None and noisy_audio_microphone_t is not None:
        gr.Warning(f"both audio file and microphone file is provided, audio file taking priority.")

    noisy_audio_t: Tuple = noisy_audio_file_t or noisy_audio_microphone_t

    sample_rate, signal = noisy_audio_t
    audio_duration = signal.shape[-1] // 8000

    # Test: 使用 microphone 时,显示采样率是 44100,但 signal 实际是按 8000 的采样率的。
    logger.info(f"run denoise; engine: {engine}, sample_rate: {sample_rate}, signal dtype: {signal.dtype}, signal shape: {signal.shape}")

    noisy_audio = np.array(signal / (1 << 15), dtype=np.float32)

    infer_engine_param = denoise_engines.get(engine)
    if infer_engine_param is None:
        raise gr.Error(f"invalid denoise engine: {engine}.")

    try:
        infer_cls = infer_engine_param["infer_cls"]
        kwargs = infer_engine_param["kwargs"]
        infer_engine = load_denoise_model(infer_cls=infer_cls, **kwargs)

        begin = time.time()
        denoise_audio = infer_engine.enhancement_by_ndarray(noisy_audio)
        time_cost = time.time() - begin

        fpr = time_cost / audio_duration
        info = {
            "time_cost": round(time_cost, 4),
            "audio_duration": round(audio_duration, 4),
            "fpr": round(fpr, 4)
        }
        message = json.dumps(info, ensure_ascii=False, indent=4)

        noise_audio = noisy_audio - denoise_audio

        noisy_mag_db = generate_spectrogram(noisy_audio, title="noisy")
        denoise_mag_db = generate_spectrogram(denoise_audio, title="denoise")
        noise_mag_db = generate_spectrogram(noise_audio, title="noise")

        denoise_audio = np.array(denoise_audio * (1 << 15), dtype=np.int16)
        noise_audio = np.array(noise_audio * (1 << 15), dtype=np.int16)

    except Exception as e:
        raise gr.Error(f"enhancement failed, error type: {type(e)}, error text: {str(e)}.")

    denoise_audio_t = (sample_rate, denoise_audio)
    noise_audio_t = (sample_rate, noise_audio)
    return denoise_audio_t, noise_audio_t, message, noisy_mag_db, denoise_mag_db, noise_mag_db


def main():
    args = get_args()

    examples_dir = Path(args.examples_dir)
    trained_model_dir = Path(args.trained_model_dir)

    # download models
    if not trained_model_dir.exists():
        trained_model_dir.mkdir(parents=True, exist_ok=True)
        _ = snapshot_download(
            repo_id=args.models_repo_id,
            local_dir=trained_model_dir.as_posix(),
            token=args.hf_token,
        )

    # engines
    global denoise_engines
    denoise_engines = {
        filename.stem: {
            "infer_cls": get_infer_cls_by_model_name(filename.stem),
            "kwargs": {
                "pretrained_model_path_or_zip_file": filename.as_posix()
            }
        }
        for filename in (project_path / "trained_models").glob("*.zip")
        if filename.name != "examples.zip"
    }

    # choices
    denoise_engine_choices = list(denoise_engines.keys())

    # examples
    if not examples_dir.exists():
        example_zip_file = trained_model_dir / "examples.zip"
        with zipfile.ZipFile(example_zip_file.as_posix(), "r") as f_zip:
            out_root = examples_dir
            if out_root.exists():
                shutil.rmtree(out_root.as_posix())
            out_root.mkdir(parents=True, exist_ok=True)
            f_zip.extractall(path=out_root)

    # examples
    examples = list()
    for filename in examples_dir.glob("**/*.wav"):
        examples.append([
            filename.as_posix(),
            None,
            denoise_engine_choices[0],
        ])

    # ui
    with gr.Blocks() as blocks:
        gr.Markdown(value="denoise.")
        with gr.Tabs():
            with gr.TabItem("denoise"):
                with gr.Row():
                    with gr.Column(variant="panel", scale=5):
                        with gr.Tabs():
                            with gr.TabItem("file"):
                                dn_noisy_audio_file = gr.Audio(label="noisy_audio")
                            with gr.TabItem("microphone"):
                                dn_noisy_audio_microphone = gr.Audio(sources="microphone", label="noisy_audio")

                        dn_engine = gr.Dropdown(choices=denoise_engine_choices, value=denoise_engine_choices[0], label="engine")
                        dn_button = gr.Button(variant="primary")
                    with gr.Column(variant="panel", scale=5):
                        with gr.Tabs():
                            with gr.TabItem("audio"):
                                dn_denoise_audio = gr.Audio(label="denoise_audio")
                                dn_noise_audio = gr.Audio(label="noise_audio")
                                dn_message = gr.Textbox(lines=1, max_lines=20, label="message")
                            with gr.TabItem("mag_db"):
                                dn_noisy_mag_db = gr.Image(label="noisy_mag_db")
                                dn_denoise_mag_db = gr.Image(label="denoise_mag_db")
                                dn_noise_mag_db = gr.Image(label="noise_mag_db")

                dn_button.click(
                    when_click_denoise_button,
                    inputs=[dn_noisy_audio_file, dn_noisy_audio_microphone, dn_engine],
                    outputs=[dn_denoise_audio, dn_noise_audio, dn_message, dn_noisy_mag_db, dn_denoise_mag_db, dn_noise_mag_db]
                )
                gr.Examples(
                    examples=examples,
                    inputs=[dn_noisy_audio_file, dn_noisy_audio_microphone, dn_engine],
                    outputs=[dn_denoise_audio, dn_noise_audio, dn_message, dn_noisy_mag_db, dn_denoise_mag_db, dn_noise_mag_db],
                    fn=when_click_denoise_button,
                    # cache_examples=True,
                    # cache_mode="lazy",
                )

            with gr.TabItem("shell"):
                shell_text = gr.Textbox(label="cmd")
                shell_button = gr.Button("run")
                shell_output = gr.Textbox(label="output")

                shell_button.click(
                    shell,
                    inputs=[shell_text,],
                    outputs=[shell_output],
                )

    # http://127.0.0.1:7865/
    # http://10.75.27.247:7865/
    blocks.queue().launch(
        # share=True,
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=args.server_port
    )
    return


if __name__ == "__main__":
    main()