--- title: CC Denoise emoji: 🐢 colorFrom: purple colorTo: blue sdk: docker pinned: false license: apache-2.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference ## CC Denoise ### datasets ```text AISHELL (15G) https://openslr.trmal.net/resources/33/ AISHELL-3 (19G) http://www.openslr.org/93/ DNS3 https://github.com/microsoft/DNS-Challenge/blob/master/download-dns-challenge-3.sh 噪音数据来源于 DEMAND, FreeSound, AudioSet. MS-SNSD https://github.com/microsoft/MS-SNSD 噪音数据来源于 DEMAND, FreeSound. MUSAN https://www.openslr.org/17/ 其中包含 music, noise, speech. music 是一些纯音乐, noise 包含 free-sound, sound-bible, sound-bible部分也许可以做为补充部分. 总的来说, 有用的不部不多, 可能噪音数据仍然需要自己收集为主, 更加可靠. CHiME-4 https://www.chimechallenge.org/challenges/chime4/download.html freesound https://freesound.org/ AudioSet https://research.google.com/audioset/index.html ``` ### ### 创建训练容器 ```text 在容器中训练模型,需要能够从容器中访问到 GPU,参考: https://hub.docker.com/r/ollama/ollama docker run -itd \ --name nx_denoise \ --network host \ --gpus all \ --privileged \ --ipc=host \ -v /data/tianxing/HuggingDatasets/nx_noise/data:/data/tianxing/HuggingDatasets/nx_noise/data \ -v /data/tianxing/PycharmProjects/nx_denoise:/data/tianxing/PycharmProjects/nx_denoise \ python:3.12 查看GPU nvidia-smi watch -n 1 -d nvidia-smi ``` ```text 在容器中访问 GPU 参考: https://blog.csdn.net/footless_bird/article/details/136291344 步骤: # 安装 yum install -y nvidia-container-toolkit # 编辑文件 /etc/docker/daemon.json cat /etc/docker/daemon.json { "data-root": "/data/lib/docker", "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } }, "registry-mirrors": [ "https://docker.m.daocloud.io", "https://dockerproxy.com", "https://docker.mirrors.ustc.edu.cn", "https://docker.nju.edu.cn" ] } # 重启 docker systemctl restart docker systemctl daemon-reload # 测试容器内能否访问 GPU. docker run --gpus all python:3.12-slim nvidia-smi # 通过这种方式启动容器, 在容器中, 可以查看到 GPU. 但是容器中没有 GPU驱动 nvidia-smi 不工作. docker run -it --privileged python:3.12-slim /bin/bash apt update apt install -y pciutils lspci | grep -i nvidia #00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1) # 网上看的是这种启动容器的方式, 但是进去后仍然是 nvidia-smi 不工作. docker run \ --device /dev/nvidia0:/dev/nvidia0 \ --device /dev/nvidiactl:/dev/nvidiactl \ --device /dev/nvidia-uvm:/dev/nvidia-uvm \ -v /usr/local/nvidia:/usr/local/nvidia \ -it --privileged python:3.12-slim /bin/bash # 这种方式进入容器, nvidia-smi 可以工作. 应该关键是 --gpus all 参数. docker run -itd --gpus all --name open_unsloth python:3.12-slim /bin/bash docker run -itd --gpus all --name Qwen2-7B-Instruct python:3.12-slim /bin/bash ```