File size: 5,063 Bytes
e86d760
 
 
88b2fbf
e86d760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b2fbf
 
e86d760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9e32d
e86d760
7f9e32d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86d760
 
88b2fbf
 
 
e86d760
 
 
 
 
 
 
 
 
7f9e32d
 
e86d760
 
 
 
7f9e32d
 
e86d760
 
 
 
 
 
88b2fbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e86d760
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import json
import os
from pathlib import Path
import random
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

from tqdm import tqdm
import librosa


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--file_dir", default="./", type=str)

    parser.add_argument(
        "--noise_dir",
        default=r"E:\Users\tianx\HuggingDatasets\nx_noise\data\noise",
        type=str
    )
    parser.add_argument(
        "--speech_dir",
        default=r"E:\programmer\asr_datasets\aishell\data_aishell\wav\train",
        type=str
    )

    parser.add_argument("--train_dataset", default="train.jsonl", type=str)
    parser.add_argument("--valid_dataset", default="valid.jsonl", type=str)

    parser.add_argument("--duration", default=2.0, type=float)
    parser.add_argument("--min_snr_db", default=-10, type=float)
    parser.add_argument("--max_snr_db", default=20, type=float)

    parser.add_argument("--target_sample_rate", default=8000, type=int)

    parser.add_argument("--max_count", default=10000, type=int)

    args = parser.parse_args()
    return args


def filename_generator(data_dir: str):
    data_dir = Path(data_dir)
    for filename in data_dir.glob("**/*.wav"):
        yield filename.as_posix()


def target_second_signal_generator(data_dir: str, duration: int = 2, sample_rate: int = 8000, max_epoch: int = 20000):
    data_dir = Path(data_dir)
    for epoch_idx in range(max_epoch):
        for filename in data_dir.glob("**/*.wav"):
            signal, _ = librosa.load(filename.as_posix(), sr=sample_rate)
            raw_duration = librosa.get_duration(y=signal, sr=sample_rate)

            if raw_duration < duration:
                # print(f"duration less than {duration} s. skip filename: {filename.as_posix()}")
                continue
            if signal.ndim != 1:
                raise AssertionError(f"expected ndim 1, instead of {signal.ndim}")

            signal_length = len(signal)
            win_size = int(duration * sample_rate)
            for begin in range(0, signal_length - win_size, win_size):
                row = {
                    "epoch_idx": epoch_idx,
                    "filename": filename.as_posix(),
                    "raw_duration": round(raw_duration, 4),
                    "offset": round(begin / sample_rate, 4),
                    "duration": round(duration, 4),
                }
                yield row


def main():
    args = get_args()

    file_dir = Path(args.file_dir)
    file_dir.mkdir(exist_ok=True)

    noise_dir = Path(args.noise_dir)
    speech_dir = Path(args.speech_dir)

    noise_generator = target_second_signal_generator(
        noise_dir.as_posix(),
        duration=args.duration,
        sample_rate=args.target_sample_rate,
        max_epoch=100000,
    )
    speech_generator = target_second_signal_generator(
        speech_dir.as_posix(),
        duration=args.duration,
        sample_rate=args.target_sample_rate,
        max_epoch=1,
    )

    dataset = list()

    count = 0
    process_bar = tqdm(desc="build dataset excel")
    with open(args.train_dataset, "w", encoding="utf-8") as ftrain, open(args.valid_dataset, "w", encoding="utf-8") as fvalid:
        for noise, speech in zip(noise_generator, speech_generator):
            if count >= args.max_count:
                break

            noise_filename = noise["filename"]
            noise_raw_duration = noise["raw_duration"]
            noise_offset = noise["offset"]
            noise_duration = noise["duration"]

            speech_filename = speech["filename"]
            speech_raw_duration = speech["raw_duration"]
            speech_offset = speech["offset"]
            speech_duration = speech["duration"]

            random1 = random.random()
            random2 = random.random()

            row = {
                "noise_filename": noise_filename,
                "noise_raw_duration": noise_raw_duration,
                "noise_offset": noise_offset,
                "noise_duration": noise_duration,

                "speech_filename": speech_filename,
                "speech_raw_duration": speech_raw_duration,
                "speech_offset": speech_offset,
                "speech_duration": speech_duration,

                "snr_db": random.uniform(args.min_snr_db, args.max_snr_db),

                "random1": random1,
            }
            row = json.dumps(row, ensure_ascii=False)
            if random2 < 0.8:
                ftrain.write(f"{row}\n")
            else:
                fvalid.write(f"{row}\n")

            count += 1
            duration_seconds = count * args.duration
            duration_hours = duration_seconds / 3600

            process_bar.update(n=1)
            process_bar.set_postfix({
                # "duration_seconds": round(duration_seconds, 4),
                "duration_hours": round(duration_hours, 4),

            })

    return


if __name__ == "__main__":
    main()