File size: 5,495 Bytes
bd94e77
 
 
19b9289
8ce0f99
bd94e77
6f78f1b
 
bd94e77
 
8ce0f99
1e78a70
bd94e77
19b9289
 
 
1e78a70
bd94e77
19b9289
 
 
 
bd94e77
 
 
8ce0f99
 
 
 
 
 
 
 
2cc4b35
8ce0f99
 
 
 
 
 
 
bd94e77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b9289
 
 
 
5e7d9ca
1e78a70
 
 
 
19b9289
1e78a70
 
 
 
 
 
 
 
 
 
 
 
 
 
6f78f1b
1e78a70
 
bd94e77
 
 
8ce0f99
 
 
 
 
 
 
 
 
 
 
 
5e7d9ca
 
 
5458faa
 
 
 
 
5e7d9ca
 
 
1e78a70
 
 
6f78f1b
 
 
 
 
 
 
 
 
 
 
ff8ec88
6f78f1b
 
 
 
 
bd94e77
 
1e78a70
 
 
 
 
 
 
 
 
 
 
 
 
 
6f78f1b
1e78a70
bec46dd
 
 
 
 
22399a5
 
bec46dd
bd94e77
19b9289
 
 
 
 
 
 
 
 
 
 
bd94e77
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
import logging
from pathlib import Path
import platform
import shutil
import zipfile

import gradio as gr
from huggingface_hub import snapshot_download
import numpy as np

import log
from project_settings import environment, project_path, log_directory
from toolbox.os.command import Command
from toolbox.torchaudio.models.mpnet.inference_mpnet import InferenceMPNet

log.setup_size_rotating(log_directory=log_directory)

logger = logging.getLogger("main")


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--examples_dir",
        # default=(project_path / "data").as_posix(),
        default=(project_path / "data/examples").as_posix(),
        type=str
    )
    parser.add_argument(
        "--models_repo_id",
        default="qgyd2021/nx_denoise",
        type=str
    )
    parser.add_argument(
        "--trained_model_dir",
        default=(project_path / "trained_models").as_posix(),
        type=str
    )
    parser.add_argument(
        "--hf_token",
        default=environment.get("hf_token"),
        type=str,
    )
    parser.add_argument(
        "--server_port",
        default=environment.get("server_port", 7860),
        type=int
    )

    args = parser.parse_args()
    return args


def shell(cmd: str):
    return Command.popen(cmd)


denoise_engines = dict()


def when_click_denoise_button(noisy_audio_t, engine: str):
    sample_rate, signal = noisy_audio_t
    logger.info(f"run denoise; engine: {engine}, sample_rate: {sample_rate}, signal dtype: {signal.dtype}, signal shape: {signal.shape}")

    noisy_audio = np.array(signal / (1 << 15), dtype=np.float32)

    infer_engine = denoise_engines.get(engine)
    if infer_engine is None:
        raise gr.Error(f"invalid denoise engine: {engine}.")

    try:
        enhanced_audio = infer_engine.enhancement_by_ndarray(noisy_audio)
        enhanced_audio = np.array(enhanced_audio * (1 << 15), dtype=np.int16)
    except Exception as e:
        raise gr.Error(f"enhancement failed, error type: {type(e)}, error text: {str(e)}.")

    enhanced_audio_t = (sample_rate, enhanced_audio)
    return enhanced_audio_t


def main():
    args = get_args()

    examples_dir = Path(args.examples_dir)
    trained_model_dir = Path(args.trained_model_dir)

    # download models
    if not trained_model_dir.exists():
        trained_model_dir.mkdir(parents=True, exist_ok=True)
        _ = snapshot_download(
            repo_id=args.models_repo_id,
            local_dir=trained_model_dir.as_posix(),
            token=args.hf_token,
        )

    # engines
    global denoise_engines
    denoise_engines = {
        "mpnet-aishell-1-epoch": InferenceMPNet(
            pretrained_model_path_or_zip_file=(project_path / "trained_models/mpnet-aishell-1-epoch.zip").as_posix(),
        ),
        "mpnet-aishell-11-epoch": InferenceMPNet(
            pretrained_model_path_or_zip_file=(project_path / "trained_models/mpnet-aishell-11-epoch.zip").as_posix(),
        ),
    }

    # choices
    denoise_engine_choices = list(denoise_engines.keys())

    # examples
    example_zip_file = trained_model_dir / "examples.zip"
    with zipfile.ZipFile(example_zip_file.as_posix(), "r") as f_zip:
        out_root = examples_dir
        if out_root.exists():
            shutil.rmtree(out_root.as_posix())
        out_root.mkdir(parents=True, exist_ok=True)
        f_zip.extractall(path=out_root)

    # examples
    examples = list()
    for filename in examples_dir.glob("**/*.wav"):
        examples.append([
            filename.as_posix(),
            denoise_engine_choices[0]
        ])

    # ui
    with gr.Blocks() as blocks:
        gr.Markdown(value="nx denoise.")
        with gr.Tabs():
            with gr.TabItem("denoise"):
                with gr.Row():
                    with gr.Column(variant="panel", scale=5):
                        dn_noisy_audio = gr.Audio(label="noisy_audio")
                        dn_engine = gr.Dropdown(choices=denoise_engine_choices, value=denoise_engine_choices[0], label="engine")
                        dn_button = gr.Button(variant="primary")
                    with gr.Column(variant="panel", scale=5):
                        dn_enhanced_audio = gr.Audio(label="enhanced_audio")

                dn_button.click(
                    when_click_denoise_button,
                    inputs=[dn_noisy_audio, dn_engine],
                    outputs=[dn_enhanced_audio]
                )
                gr.Examples(
                    examples=examples,
                    inputs=[dn_noisy_audio, dn_engine],
                    outputs=[dn_enhanced_audio],
                    fn=when_click_denoise_button,
                    cache_examples=True,
                    cache_mode="lazy",
                )

            with gr.TabItem("shell"):
                shell_text = gr.Textbox(label="cmd")
                shell_button = gr.Button("run")
                shell_output = gr.Textbox(label="output")

                shell_button.click(
                    shell,
                    inputs=[shell_text,],
                    outputs=[shell_output],
                )

    # http://127.0.0.1:7864/
    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="127.0.0.1" if platform.system() == "Windows" else "0.0.0.0",
        server_port=args.server_port
    )
    return


if __name__ == "__main__":
    main()