File size: 9,073 Bytes
e86d760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://arxiv.org/abs/2006.12847

https://github.com/facebookresearch/denoiser
"""
import math
import os
from typing import List, Optional, Union

import torch
import torch.nn as nn
from torch.nn import functional as F

from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.models.demucs.configuration_demucs import DemucsConfig
from toolbox.torchaudio.models.demucs.resample import upsample2, downsample2


activation_layer_dict = {
    "glu": nn.GLU,
    "relu": nn.ReLU,
    "identity": nn.Identity,
    "sigmoid": nn.Sigmoid,
}


class BLSTM(nn.Module):
    def __init__(self,
                 hidden_size: int,
                 num_layers: int = 2,
                 bidirectional: bool = True,
                 ):
        super().__init__()
        self.lstm = nn.LSTM(bidirectional=bidirectional,
                            num_layers=num_layers,
                            hidden_size=hidden_size,
                            input_size=hidden_size
                            )
        self.linear = None
        if bidirectional:
            self.linear = nn.Linear(2 * hidden_size, hidden_size)

    def forward(self,
                x: torch.Tensor,
                hx: torch.Tensor = None
                ):
        x, hx = self.lstm.forward(x, hx)
        if self.linear:
            x = self.linear(x)
        return x, hx


def rescale_conv(conv, reference):
    std = conv.weight.std().detach()
    scale = (std / reference)**0.5
    conv.weight.data /= scale
    if conv.bias is not None:
        conv.bias.data /= scale


def rescale_module(module, reference):
    for sub in module.modules():
        if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
            rescale_conv(sub, reference)


class DemucsModel(nn.Module):
    def __init__(self,
                 in_channels: int = 1,
                 out_channels: int = 1,
                 hidden_channels: int = 48,
                 depth: int = 5,
                 kernel_size: int = 8,
                 stride: int = 4,
                 causal: bool = True,
                 resample: int = 4,
                 growth: int = 2,
                 max_hidden: int = 10_000,
                 do_normalize: bool = True,
                 rescale: float = 0.1,
                 floor: float = 1e-3,
                 ):
        super(DemucsModel, self).__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels

        self.depth = depth
        self.kernel_size = kernel_size
        self.stride = stride

        self.causal = causal

        self.resample = resample
        self.growth = growth
        self.max_hidden = max_hidden
        self.do_normalize = do_normalize
        self.rescale = rescale
        self.floor = floor

        if resample not in [1, 2, 4]:
            raise ValueError("Resample should be 1, 2 or 4.")

        self.encoder = nn.ModuleList()
        self.decoder = nn.ModuleList()

        for index in range(depth):
            encode = []
            encode += [
                nn.Conv1d(in_channels, hidden_channels, kernel_size, stride),
                nn.ReLU(),
                nn.Conv1d(hidden_channels, hidden_channels * 2, 1),
                nn.GLU(1),
            ]
            self.encoder.append(nn.Sequential(*encode))

            decode = []
            decode += [
                nn.Conv1d(hidden_channels, 2 * hidden_channels, 1),
                nn.GLU(1),
                nn.ConvTranspose1d(hidden_channels, out_channels, kernel_size, stride),
            ]
            if index > 0:
                decode.append(nn.ReLU())
            self.decoder.insert(0, nn.Sequential(*decode))
            out_channels = hidden_channels
            in_channels = hidden_channels
            hidden_channels = min(int(growth * hidden_channels), max_hidden)

        self.lstm = BLSTM(in_channels, bidirectional=not causal)

        if rescale:
            rescale_module(self, reference=rescale)

    @staticmethod
    def valid_length(length: int, depth: int, kernel_size: int, stride: int, resample: int):
        """
        Return the nearest valid length to use with the model so that
        there is no time steps left over in a convolutions, e.g. for all
        layers, size of the input - kernel_size % stride = 0.

        If the mixture has a valid length, the estimated sources
        will have exactly the same length.
        """
        length = math.ceil(length * resample)
        for idx in range(depth):
            length = math.ceil((length - kernel_size) / stride) + 1
            length = max(length, 1)
        for idx in range(depth):
            length = (length - 1) * stride + kernel_size
        length = int(math.ceil(length / resample))
        return int(length)

    def forward(self, noisy: torch.Tensor):
        """
        :param noisy: Tensor, shape: [batch_size, num_samples] or [batch_size, channels, num_samples]
        :return:
        """
        if noisy.dim() == 2:
            noisy = noisy.unsqueeze(1)
        # noisy shape: [batch_size, channels, num_samples]

        if self.do_normalize:
            mono = noisy.mean(dim=1, keepdim=True)
            std = mono.std(dim=-1, keepdim=True)
            noisy = noisy / (self.floor + std)
        else:
            std = 1

        _, _, length = noisy.shape
        x = noisy

        length_ = self.valid_length(length, self.depth, self.kernel_size, self.stride, self.resample)
        x = F.pad(x, (0, length_ - length))

        if self.resample == 2:
            x = upsample2(x)
        elif self.resample == 4:
            x = upsample2(x)
            x = upsample2(x)

        skips = []
        for encode in self.encoder:
            x = encode(x)
            skips.append(x)
        x = x.permute(2, 0, 1)
        x, _ = self.lstm(x)
        x = x.permute(1, 2, 0)

        for decode in self.decoder:
            skip = skips.pop(-1)
            x = x + skip[..., :x.shape[-1]]
            x = decode(x)

        if self.resample == 2:
            x = downsample2(x)
        elif self.resample == 4:
            x = downsample2(x)
            x = downsample2(x)

        x = x[..., :length]
        return std * x


MODEL_FILE = "model.pt"


class DemucsPretrainedModel(DemucsModel):
    def __init__(self,
                 config: DemucsConfig,
                 ):
        super(DemucsPretrainedModel, self).__init__(
            # sample_rate=config.sample_rate,
            in_channels=config.in_channels,
            out_channels=config.out_channels,
            hidden_channels=config.hidden_channels,
            depth=config.depth,
            kernel_size=config.kernel_size,
            stride=config.stride,
            causal=config.causal,
            resample=config.resample,
            growth=config.growth,
            max_hidden=config.max_hidden,
            do_normalize=config.do_normalize,
            rescale=config.rescale,
            floor=config.floor,
        )
        self.config = config

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        config = DemucsConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        model = cls(config)

        if os.path.isdir(pretrained_model_name_or_path):
            ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
        else:
            ckpt_file = pretrained_model_name_or_path

        with open(ckpt_file, "rb") as f:
            state_dict = torch.load(f, map_location="cpu", weights_only=True)
        model.load_state_dict(state_dict, strict=True)
        return model

    def save_pretrained(self,
                        save_directory: Union[str, os.PathLike],
                        state_dict: Optional[dict] = None,
                        ):

        model = self

        if state_dict is None:
            state_dict = model.state_dict()

        os.makedirs(save_directory, exist_ok=True)

        # save state dict
        model_file = os.path.join(save_directory, MODEL_FILE)
        torch.save(state_dict, model_file)

        # save config
        config_file = os.path.join(save_directory, CONFIG_FILE)
        self.config.to_yaml_file(config_file)
        return save_directory


def main():
    config = DemucsConfig()
    model = DemucsModel(
        in_channels=config.in_channels,
        out_channels=config.out_channels,
        hidden_channels=config.hidden_channels,
        depth=config.depth,
        kernel_size=config.kernel_size,
        stride=config.stride,
        causal=config.causal,
        resample=config.resample,
        growth=config.growth,
        max_hidden=config.max_hidden,
        do_normalize=config.do_normalize,
        rescale=config.rescale,
        floor=config.floor,
    )

    print(model)

    noisy = torch.rand(size=(1, 8000*4), dtype=torch.float32)

    denoise = model.forward(noisy)
    print(denoise.shape)
    return


if __name__ == "__main__":
    main()