Spaces:
Running
Running
File size: 13,783 Bytes
bd94e77 35a4689 bd94e77 35a4689 bd94e77 35a4689 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://github.com/xiph/rnnoise
https://github.com/xiph/rnnoise/blob/main/torch/rnnoise/rnnoise.py
https://arxiv.org/abs/1709.08243
"""
import os
from typing import Optional, Union, Tuple
import torch
import torch.nn as nn
from torch.nn import functional as F
from toolbox.torch.sparsification.gru_sparsifier import GRUSparsifier
from toolbox.torchaudio.models.rnnoise.configuration_rnnoise import RNNoiseConfig
from toolbox.torchaudio.configuration_utils import CONFIG_FILE
from toolbox.torchaudio.modules.conv_stft import ConvSTFT, ConviSTFT
from toolbox.torchaudio.modules.freq_bands.erb_bands import ErbBands
sparsify_start = 6000
sparsify_stop = 20000
sparsify_interval = 100
sparsify_exponent = 3
sparse_params1 = {
"W_hr" : (0.3, [8, 4], True),
"W_hz" : (0.2, [8, 4], True),
"W_hn" : (0.5, [8, 4], True),
"W_ir" : (0.3, [8, 4], False),
"W_iz" : (0.2, [8, 4], False),
"W_in" : (0.5, [8, 4], False),
}
def init_weights(module):
if isinstance(module, nn.GRU):
for p in module.named_parameters():
if p[0].startswith("weight_hh_"):
nn.init.orthogonal_(p[1])
class RNNoise(nn.Module):
def __init__(self,
sample_rate: int = 8000,
nfft: int = 512,
win_size: int = 512,
hop_size: int = 256,
win_type: str = "hann",
erb_bins: int = 32,
min_freq_bins_for_erb: int = 2,
conv_size: int = 128,
gru_size: int = 256,
):
super(RNNoise, self).__init__()
self.sample_rate = sample_rate
self.nfft = nfft
self.win_size = win_size
self.hop_size = hop_size
self.win_type = win_type
self.erb_bins = erb_bins
self.min_freq_bins_for_erb = min_freq_bins_for_erb
self.conv_size = conv_size
self.gru_size = gru_size
self.input_dim = nfft // 2 + 1
self.eps = 1e-12
self.erb_bands = ErbBands(
sample_rate=self.sample_rate,
nfft=self.nfft,
erb_bins=self.erb_bins,
min_freq_bins_for_erb=self.min_freq_bins_for_erb,
)
self.stft = ConvSTFT(
nfft=self.nfft,
win_size=self.win_size,
hop_size=self.hop_size,
win_type=self.win_type,
power=None,
requires_grad=False
)
self.istft = ConviSTFT(
nfft=self.nfft,
win_size=self.win_size,
hop_size=self.hop_size,
win_type=self.win_type,
requires_grad=False
)
self.pad = nn.ConstantPad1d(padding=(2, 2), value=0)
self.conv1 = nn.Conv1d(self.erb_bins, conv_size, kernel_size=3, padding="valid")
self.conv2 = nn.Conv1d(conv_size, gru_size, kernel_size=3, padding="valid")
self.gru1 = nn.GRU(self.gru_size, self.gru_size, batch_first=True)
self.gru2 = nn.GRU(self.gru_size, self.gru_size, batch_first=True)
self.gru3 = nn.GRU(self.gru_size, self.gru_size, batch_first=True)
self.dense_out = nn.Linear(4*self.gru_size, self.erb_bins)
nb_params = sum(p.numel() for p in self.parameters())
print(f"model: {nb_params} weights")
self.apply(init_weights)
self.sparsifier = [
GRUSparsifier(
task_list=[(self.gru1, sparse_params1)],
start=sparsify_start,
stop=sparsify_stop,
interval=sparsify_interval,
exponent=sparsify_exponent,
),
GRUSparsifier(
task_list=[(self.gru2, sparse_params1)],
start=sparsify_start,
stop=sparsify_stop,
interval=sparsify_interval,
exponent=sparsify_exponent,
),
GRUSparsifier(
task_list=[(self.gru3, sparse_params1)],
start=sparsify_start,
stop=sparsify_stop,
interval=sparsify_interval,
exponent=sparsify_exponent,
)
]
def sparsify(self):
for sparsifier in self.sparsifier:
sparsifier.step()
def signal_prepare(self, signal: torch.Tensor) -> torch.Tensor:
if signal.dim() == 2:
signal = torch.unsqueeze(signal, dim=1)
_, _, n_samples = signal.shape
remainder = (n_samples - self.win_size) % self.hop_size
if remainder > 0:
n_samples_pad = self.hop_size - remainder
signal = F.pad(signal, pad=(0, n_samples_pad), mode="constant", value=0)
return signal
def forward(self,
noisy: torch.Tensor,
states: Tuple[torch.Tensor, torch.Tensor, torch.Tensor] = None,
):
num_samples = noisy.shape[-1]
noisy = self.signal_prepare(noisy)
batch_size, _, num_samples_pad = noisy.shape
# print(f"num_samples: {num_samples}, num_samples_pad: {num_samples_pad}")
mag_noisy, pha_noisy = self.mag_pha_stft(noisy)
# shape: (b, f, t)
# t = (num_samples - win_size) / hop_size + 1
mag_noisy_t = torch.transpose(mag_noisy, dim0=1, dim1=2)
# shape: (b, t, f)
mag_noisy_t_erb = self.erb_bands.erb_scale(mag_noisy_t, db=True)
# shape: (b, t, erb_bins)
mag_noisy_t_erb = torch.transpose(mag_noisy_t_erb, dim0=1, dim1=2)
# shape: (b, erb_bins, t)
mag_noisy_t_erb = self.pad(mag_noisy_t_erb)
mag_noisy_t_erb = self.forward_conv(mag_noisy_t_erb)
gru_out, states = self.forward_gru(mag_noisy_t_erb, states)
# gru_out shape: [b, t, f]
mask_erb = torch.sigmoid(self.dense_out(gru_out))
# mask_erb shape: (b, t, erb_bins)
mask = self.erb_bands.erb_scale_inv(mask_erb)
# mask shape: (b, t, f)
mask = torch.transpose(mask, dim0=1, dim1=2)
# mask shape: (b, f, t)
stft_denoise = self.do_mask(mag_noisy, pha_noisy, mask)
denoise = self.istft.forward(stft_denoise)
# denoise shape: [b, 1, num_samples_pad]
denoise = denoise[:, :, :num_samples]
# denoise shape: [b, 1, num_samples]
return denoise, mask, states
def forward_conv(self, mag_noisy: torch.Tensor):
# mag_noisy shape: [b, f, t]
tmp = mag_noisy
# tmp shape: [b, f, t]
tmp = torch.tanh(self.conv1(tmp))
tmp = torch.tanh(self.conv2(tmp))
# tmp shape: [b, f, t]
return tmp
def forward_gru(self,
mag_noisy: torch.Tensor,
states: Tuple[torch.Tensor, torch.Tensor, torch.Tensor] = None,
):
if states is None:
gru1_state = None
gru2_state = None
gru3_state = None
else:
gru1_state = states[0]
gru2_state = states[1]
gru3_state = states[2]
# mag_noisy shape: [b, f, t]
tmp = mag_noisy.permute(0, 2, 1)
# tmp shape: [b, t, f]
gru1_out, gru1_state = self.gru1(tmp, gru1_state)
gru2_out, gru2_state = self.gru2(gru1_out, gru2_state)
gru3_out, gru3_state = self.gru3(gru2_out, gru3_state)
new_states = [gru1_state, gru2_state, gru3_state]
gru_out = torch.cat(tensors=[tmp, gru1_out, gru2_out, gru3_out], dim=-1)
# gru_out shape: [b, t, f]
return gru_out, new_states
def forward_chunk_by_chunk(self,
noisy: torch.Tensor,
):
noisy = self.signal_prepare(noisy)
b, _, num_samples = noisy.shape
t = (num_samples - self.win_size) / self.hop_size + 1
waveform = torch.zeros(size=(b, 1, 0), dtype=torch.float32)
states = None
waveform_cache = None
coff_cache = None
cache_list = list()
for i in range(int(t)):
begin = i * self.hop_size
end = begin + self.win_size
sub_noisy = noisy[:, :, begin:end]
mag_noisy, pha_noisy = self.mag_pha_stft(sub_noisy)
mag_noisy_t = torch.transpose(mag_noisy, dim0=1, dim1=2)
mag_noisy_t_erb = self.erb_bands.erb_scale(mag_noisy_t, db=True)
mag_noisy_t_erb = torch.transpose(mag_noisy_t_erb, dim0=1, dim1=2)
# mag_noisy_t_erb shape: (b, erb_bins, t)
if len(cache_list) == 0:
cache_list.extend([{
"mag_noisy": torch.zeros_like(mag_noisy),
"pha_noisy": torch.zeros_like(pha_noisy),
"mag_noisy_t_erb": torch.zeros_like(mag_noisy_t_erb),
}] * 2)
cache_list.append({
"mag_noisy": mag_noisy,
"pha_noisy": pha_noisy,
"mag_noisy_t_erb": mag_noisy_t_erb,
})
if len(cache_list) < 5:
continue
mag_noisy_t_erb = torch.concat(
tensors=[c["mag_noisy_t_erb"] for c in cache_list],
dim=-1
)
mag_noisy = cache_list[2]["mag_noisy"]
pha_noisy = cache_list[2]["pha_noisy"]
cache_list.pop(0)
# mag_noisy_t_erb shape: [b, f, 5]
mag_noisy_t_erb = self.forward_conv(mag_noisy_t_erb)
# mag_noisy_t_erb shape: [b, f, 1]
gru_out, states = self.forward_gru(mag_noisy_t_erb, states)
mask_erb = torch.sigmoid(self.dense_out(gru_out))
mask = self.erb_bands.erb_scale_inv(mask_erb)
mask = torch.transpose(mask, dim0=1, dim1=2)
stft_denoise = self.do_mask(mag_noisy, pha_noisy, mask)
sub_waveform, waveform_cache, coff_cache = self.istft.forward_chunk(stft_denoise, waveform_cache, coff_cache)
waveform = torch.concat(tensors=[waveform, sub_waveform], dim=-1)
return waveform
def do_mask(self,
mag_noisy: torch.Tensor,
pha_noisy: torch.Tensor,
mask: torch.Tensor,
):
# (b, f, t)
mag_denoise = mag_noisy * mask
stft_denoise = mag_denoise * torch.exp((1j * pha_noisy))
return stft_denoise
def mag_pha_stft(self, noisy: torch.Tensor):
# noisy shape: [b, num_samples]
stft_noisy = self.stft.forward(noisy)
# stft_noisy shape: [b, f, t], torch.complex64
real = torch.real(stft_noisy)
imag = torch.imag(stft_noisy)
mag_noisy = torch.sqrt(real ** 2 + imag ** 2)
pha_noisy = torch.atan2(imag, real)
# shape: (b, f, t)
return mag_noisy, pha_noisy
MODEL_FILE = "model.pt"
class RNNoisePretrainedModel(RNNoise):
def __init__(self,
config: RNNoiseConfig,
):
super(RNNoisePretrainedModel, self).__init__(
sample_rate=config.sample_rate,
nfft=config.nfft,
win_size=config.win_size,
hop_size=config.hop_size,
win_type=config.win_type,
erb_bins=config.erb_bins,
min_freq_bins_for_erb=config.min_freq_bins_for_erb,
conv_size=config.conv_size,
gru_size=config.gru_size,
)
self.config = config
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
config = RNNoiseConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
model = cls(config)
if os.path.isdir(pretrained_model_name_or_path):
ckpt_file = os.path.join(pretrained_model_name_or_path, MODEL_FILE)
else:
ckpt_file = pretrained_model_name_or_path
with open(ckpt_file, "rb") as f:
state_dict = torch.load(f, map_location="cpu", weights_only=True)
model.load_state_dict(state_dict, strict=True)
return model
def save_pretrained(self,
save_directory: Union[str, os.PathLike],
state_dict: Optional[dict] = None,
):
model = self
if state_dict is None:
state_dict = model.state_dict()
os.makedirs(save_directory, exist_ok=True)
# save state dict
model_file = os.path.join(save_directory, MODEL_FILE)
torch.save(state_dict, model_file)
# save config
config_file = os.path.join(save_directory, CONFIG_FILE)
self.config.to_yaml_file(config_file)
return save_directory
def main1():
config = RNNoiseConfig()
model = RNNoisePretrainedModel(config)
model.eval()
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
noisy = model.signal_prepare(noisy)
b, _, num_samples = noisy.shape
t = (num_samples - config.win_size) / config.hop_size + 1
waveform, mask, h_state = model.forward(noisy)
print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
print(waveform[:, :, 300: 302])
return
def main2():
config = RNNoiseConfig()
model = RNNoisePretrainedModel(config)
model.eval()
noisy = torch.randn(size=(1, 16000), dtype=torch.float32)
noisy = model.signal_prepare(noisy)
b, _, num_samples = noisy.shape
t = (num_samples - config.win_size) / config.hop_size + 1
waveform, mask, h_state = model.forward(noisy)
print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
print(waveform[:, :, 300: 302])
waveform = model.forward_chunk_by_chunk(noisy)
print(f"waveform.shape: {waveform.shape}, waveform.dtype: {waveform.dtype}")
print(waveform[:, :, 300: 302])
return
if __name__ == "__main__":
main2()
|